Suppr超能文献

发夹状核酶自切割的QM/MM 研究表明存在多种竞争反应机制的可能性。

QM/MM studies of hairpin ribozyme self-cleavage suggest the feasibility of multiple competing reaction mechanisms.

机构信息

Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic.

出版信息

J Phys Chem B. 2011 Dec 1;115(47):13911-24. doi: 10.1021/jp206963g. Epub 2011 Nov 8.

Abstract

The hairpin ribozyme is a prominent member of small ribozymes since it does not require metal ions to achieve catalysis. Guanine 8 (G8) and adenine 38 (A38) have been identified as key participants in self-cleavage and -ligation. We have carried out hybrid quantum-mechanical/molecular mechanical (QM/MM) calculations to evaluate the energy along several putative reaction pathways. The error of our DFT description of the QM region was tested and shown to be ~1 kcal/mol. We find that self-cleavage of the hairpin ribozyme may follow several competing microscopic reaction mechanisms, all with calculated activation barriers in good agreement with those from experiment (20-21 kcal/mol). The initial nucleophilic attack of the A-1(2'-OH) group on the scissile phosphate is predicted to be rate-limiting in all these mechanisms. An unprotonated G8(-) (together with A38H(+)) yields a feasible activation barrier (20.4 kcal/mol). Proton transfer to a nonbridging phosphate oxygen also leads to feasible reaction pathways. Finally, our calculations consider thio-substitutions of one or both nonbridging oxygens of the scissile phosphate and predict that they have only a negligible effect on the reaction barrier, as observed experimentally.

摘要

发夹核酶是小核酶中突出的一员,因为它不需要金属离子就能实现催化。鸟嘌呤 8(G8)和腺嘌呤 38(A38)已被确定为自我切割和连接的关键参与者。我们进行了混合量子力学/分子力学(QM/MM)计算,以评估几个假定反应途径的能量。我们测试并证明了我们对 QM 区域的 DFT 描述的误差约为 1 kcal/mol。我们发现发夹核酶的自我切割可能遵循几种竞争的微观反应机制,所有机制的计算活化能与实验值(20-21 kcal/mol)非常吻合。在所有这些机制中,A-1(2'-OH)基团对裂解磷酸的初始亲核攻击预计是限速步骤。未质子化的 G8(-)(与 A38H(+)一起)产生可行的活化能垒(20.4 kcal/mol)。向非桥接磷酸氧的质子转移也导致可行的反应途径。最后,我们的计算考虑了裂解磷酸的一个或两个非桥接氧的硫取代,并预测它们对反应能垒只有微不足道的影响,这与实验观察结果一致。

相似文献

1
QM/MM studies of hairpin ribozyme self-cleavage suggest the feasibility of multiple competing reaction mechanisms.
J Phys Chem B. 2011 Dec 1;115(47):13911-24. doi: 10.1021/jp206963g. Epub 2011 Nov 8.
6
The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations.
Phys Chem Chem Phys. 2015 Jan 7;17(1):670-9. doi: 10.1039/c4cp03857f.
7
Deciphering the Self-Cleavage Reaction Mechanism of Hairpin Ribozyme.
J Phys Chem B. 2020 Jun 18;124(24):4906-4918. doi: 10.1021/acs.jpcb.0c03768. Epub 2020 Jun 10.
8
Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage.
Biopolymers. 2015 Oct;103(10):550-62. doi: 10.1002/bip.22657.
9
Thio effects and an unconventional metal ion rescue in the genomic hepatitis delta virus ribozyme.
Biochemistry. 2013 Sep 17;52(37):6499-514. doi: 10.1021/bi4000673. Epub 2013 Sep 3.
10
Evidence for the role of active site residues in the hairpin ribozyme from molecular simulations along the reaction path.
J Am Chem Soc. 2014 Jun 4;136(22):7789-92. doi: 10.1021/ja500180q. Epub 2014 May 23.

引用本文的文献

1
Investigation of the p of the Nucleophilic O2' of the Hairpin Ribozyme.
J Phys Chem B. 2021 Nov 4;125(43):11869-11883. doi: 10.1021/acs.jpcb.1c06546. Epub 2021 Oct 25.
2
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
3
Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme.
Biophys Chem. 2017 Sep;228:62-68. doi: 10.1016/j.bpc.2017.07.001. Epub 2017 Jul 8.
4
Pressure modulates the self-cleavage step of the hairpin ribozyme.
Nat Commun. 2017 Mar 30;8:14661. doi: 10.1038/ncomms14661.
5
Understanding in-line probing experiments by modeling cleavage of nonreactive RNA nucleotides.
RNA. 2017 May;23(5):712-720. doi: 10.1261/rna.060442.116. Epub 2017 Feb 15.
6
Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage.
Biopolymers. 2015 Oct;103(10):550-62. doi: 10.1002/bip.22657.
8
The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations.
Phys Chem Chem Phys. 2015 Jan 7;17(1):670-9. doi: 10.1039/c4cp03857f.
9
Molecular modeling of nucleic acid structure: energy and sampling.
Curr Protoc Nucleic Acid Chem. 2013 Oct 8;54:7.8.1-7.8.21. doi: 10.1002/0471142700.nc0708s54.
10

本文引用的文献

3
Modeling the RNA 2'OH activation: possible roles of metal ion and nucleobase as catalysts in self-cleaving ribozymes.
J Phys Chem B. 2011 Sep 22;115(37):10943-56. doi: 10.1021/jp200970d. Epub 2011 Aug 29.
4
The pH dependence of hairpin ribozyme catalysis reflects ionization of an active site adenine.
J Biol Chem. 2011 May 20;286(20):17658-64. doi: 10.1074/jbc.M111.234906. Epub 2011 Mar 28.
9
Catalytic importance of a protonated adenosine in the hairpin ribozyme active site.
Biochemistry. 2010 May 4;49(17):3723-32. doi: 10.1021/bi100234v.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验