Mlýnský Vojtěch, Walter Nils G, Šponer Jiří, Otyepka Michal, Banáš Pavel
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic.
Phys Chem Chem Phys. 2015 Jan 7;17(1):670-9. doi: 10.1039/c4cp03857f.
The hepatitis delta virus (HDV) ribozyme is a catalytic RNA motif embedded in the human pathogenic HDV RNA. It catalyzes self-cleavage of its sugar-phosphate backbone with direct participation of the active site cytosine C75. Biochemical and structural data support a general acid role of C75. Here, we used hybrid quantum mechanical/molecular mechanical (QM/MM) calculations to probe the reaction mechanism and changes in Gibbs energy along the ribozyme's reaction pathway with an N3-protonated C75H(+) in the active site, which acts as the general acid, and a partially hydrated Mg(2+) ion with one deprotonated, inner-shell coordinated water molecule that acts as the general base. We followed eight reaction paths with a distinct position and coordination of the catalytically important active site Mg(2+) ion. For six of them, we observed feasible activation barriers ranging from 14.2 to 21.9 kcal mol(-1), indicating that the specific position of the Mg(2+) ion in the active site is predicted to strongly affect the kinetics of self-cleavage. The deprotonation of the U-1(2'-OH) nucleophile and the nucleophilic attack of the resulting U-1(2'-O(-)) on the scissile phosphodiester are found to be separate steps, as deprotonation precedes the nucleophilic attack. This sequential mechanism of the HDV ribozyme differs from the concerted nucleophilic activation and attack suggested for the hairpin ribozyme. We estimate the pKa of the U-1(2'-OH) group to range from 8.8 to 11.2, suggesting that it is lowered by several units from that of a free ribose, comparable to and most likely smaller than the pKa of the solvated active site Mg(2+) ion. Our results thus support the notion that the structure of the HDV ribozyme, and particularly the positioning of the active site Mg(2+) ion, facilitate deprotonation and activation of the 2'-OH nucleophile.
丁型肝炎病毒(HDV)核酶是一种嵌入人类致病HDV RNA中的催化RNA基序。它在活性位点胞嘧啶C75的直接参与下催化其糖磷酸主链的自我切割。生化和结构数据支持C75具有一般酸的作用。在此,我们使用混合量子力学/分子力学(QM/MM)计算来探究反应机制以及沿着核酶反应途径的吉布斯自由能变化,活性位点中有一个作为一般酸的N3 - 质子化C75H⁺,还有一个部分水合的Mg²⁺离子,其带有一个去质子化的内壳层配位水分子,作为一般碱。我们沿着八条反应路径进行研究,这些路径中催化重要的活性位点Mg²⁺离子具有不同的位置和配位情况。其中六条路径,我们观察到可行的活化能垒范围为14.2至21.9 kcal mol⁻¹,这表明活性位点中Mg²⁺离子的特定位置预计会强烈影响自我切割的动力学。发现U - 1(2'-OH)亲核试剂的去质子化以及由此产生的U - 1(2'-O⁻)对可切割磷酸二酯的亲核攻击是分开的步骤,因为去质子化先于亲核攻击。HDV核酶的这种顺序机制不同于针对发夹核酶提出的协同亲核活化和攻击机制。我们估计U - 1(2'-OH)基团的pKa范围为8.8至11.2,这表明它比游离核糖的pKa降低了几个单位,与溶剂化活性位点Mg²⁺离子的pKa相当且很可能更小。因此,我们的结果支持这样一种观点,即HDV核酶的结构,特别是活性位点Mg²⁺离子的定位,促进了2'-OH亲核试剂的去质子化和活化。