Suppr超能文献

活性位点镁离子(Mg(2+))在丁型肝炎病毒核酶自我切割中的作用:来自量子力学/分子力学计算的见解

The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations.

作者信息

Mlýnský Vojtěch, Walter Nils G, Šponer Jiří, Otyepka Michal, Banáš Pavel

机构信息

Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic.

出版信息

Phys Chem Chem Phys. 2015 Jan 7;17(1):670-9. doi: 10.1039/c4cp03857f.

Abstract

The hepatitis delta virus (HDV) ribozyme is a catalytic RNA motif embedded in the human pathogenic HDV RNA. It catalyzes self-cleavage of its sugar-phosphate backbone with direct participation of the active site cytosine C75. Biochemical and structural data support a general acid role of C75. Here, we used hybrid quantum mechanical/molecular mechanical (QM/MM) calculations to probe the reaction mechanism and changes in Gibbs energy along the ribozyme's reaction pathway with an N3-protonated C75H(+) in the active site, which acts as the general acid, and a partially hydrated Mg(2+) ion with one deprotonated, inner-shell coordinated water molecule that acts as the general base. We followed eight reaction paths with a distinct position and coordination of the catalytically important active site Mg(2+) ion. For six of them, we observed feasible activation barriers ranging from 14.2 to 21.9 kcal mol(-1), indicating that the specific position of the Mg(2+) ion in the active site is predicted to strongly affect the kinetics of self-cleavage. The deprotonation of the U-1(2'-OH) nucleophile and the nucleophilic attack of the resulting U-1(2'-O(-)) on the scissile phosphodiester are found to be separate steps, as deprotonation precedes the nucleophilic attack. This sequential mechanism of the HDV ribozyme differs from the concerted nucleophilic activation and attack suggested for the hairpin ribozyme. We estimate the pKa of the U-1(2'-OH) group to range from 8.8 to 11.2, suggesting that it is lowered by several units from that of a free ribose, comparable to and most likely smaller than the pKa of the solvated active site Mg(2+) ion. Our results thus support the notion that the structure of the HDV ribozyme, and particularly the positioning of the active site Mg(2+) ion, facilitate deprotonation and activation of the 2'-OH nucleophile.

摘要

丁型肝炎病毒(HDV)核酶是一种嵌入人类致病HDV RNA中的催化RNA基序。它在活性位点胞嘧啶C75的直接参与下催化其糖磷酸主链的自我切割。生化和结构数据支持C75具有一般酸的作用。在此,我们使用混合量子力学/分子力学(QM/MM)计算来探究反应机制以及沿着核酶反应途径的吉布斯自由能变化,活性位点中有一个作为一般酸的N3 - 质子化C75H⁺,还有一个部分水合的Mg²⁺离子,其带有一个去质子化的内壳层配位水分子,作为一般碱。我们沿着八条反应路径进行研究,这些路径中催化重要的活性位点Mg²⁺离子具有不同的位置和配位情况。其中六条路径,我们观察到可行的活化能垒范围为14.2至21.9 kcal mol⁻¹,这表明活性位点中Mg²⁺离子的特定位置预计会强烈影响自我切割的动力学。发现U - 1(2'-OH)亲核试剂的去质子化以及由此产生的U - 1(2'-O⁻)对可切割磷酸二酯的亲核攻击是分开的步骤,因为去质子化先于亲核攻击。HDV核酶的这种顺序机制不同于针对发夹核酶提出的协同亲核活化和攻击机制。我们估计U - 1(2'-OH)基团的pKa范围为8.8至11.2,这表明它比游离核糖的pKa降低了几个单位,与溶剂化活性位点Mg²⁺离子的pKa相当且很可能更小。因此,我们的结果支持这样一种观点,即HDV核酶的结构,特别是活性位点Mg²⁺离子的定位,促进了2'-OH亲核试剂的去质子化和活化。

相似文献

1
The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations.
Phys Chem Chem Phys. 2015 Jan 7;17(1):670-9. doi: 10.1039/c4cp03857f.
3
Two distinct catalytic strategies in the hepatitis δ virus ribozyme cleavage reaction.
Biochemistry. 2011 Nov 8;50(44):9424-33. doi: 10.1021/bi201157t. Epub 2011 Oct 17.
8
Theoretical examination of two opposite mechanisms proposed for hepatitis delta virus ribozyme.
J Phys Chem B. 2007 Feb 22;111(7):1514-6. doi: 10.1021/jp070120u. Epub 2007 Jan 31.
10
Structural roles of monovalent cations in the HDV ribozyme.
Structure. 2007 Mar;15(3):281-7. doi: 10.1016/j.str.2007.01.017.

引用本文的文献

1
Graph deep learning locates magnesium ions in RNA.
QRB Discov. 2022;3. doi: 10.1017/qrd.2022.17. Epub 2022 Oct 6.
2
Dissociative Transition State in Hepatitis Delta Virus Ribozyme Catalysis.
J Am Chem Soc. 2023 Feb 8;145(5):2830-2839. doi: 10.1021/jacs.2c10079. Epub 2023 Jan 27.
3
Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Molecular Dynamics.
ACS Catal. 2020 Nov 20;10(22):13596-13605. doi: 10.1021/acscatal.0c03566. Epub 2020 Nov 10.
4
Evidence for Hidden Involvement of N3-Protonated Guanine in RNA Structure and Function.
ACS Omega. 2019 Jan 31;4(1):699-709. doi: 10.1021/acsomega.8b02908. Epub 2019 Jan 9.
6
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
7
Understanding in-line probing experiments by modeling cleavage of nonreactive RNA nucleotides.
RNA. 2017 May;23(5):712-720. doi: 10.1261/rna.060442.116. Epub 2017 Feb 15.
8
Unraveling Mg-RNA binding with atomistic molecular dynamics.
RNA. 2017 May;23(5):628-638. doi: 10.1261/rna.060079.116. Epub 2017 Feb 1.
9
A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation.
ACS Catal. 2016;6(3):1853-1869. doi: 10.1021/acscatal.5b02158. Epub 2016 Feb 1.
10
Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage.
Biopolymers. 2015 Oct;103(10):550-62. doi: 10.1002/bip.22657.

本文引用的文献

1
Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins.
J Chem Theory Comput. 2010 Dec 14;6(12):3836-3849. doi: 10.1021/ct100481h. Epub 2010 Nov 9.
2
Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal and Group I Intron Reverse Kink-Turn Motifs.
J Chem Theory Comput. 2011 Sep 13;7(9):2963-80. doi: 10.1021/ct200204t. Epub 2011 Aug 5.
3
Computer Folding of RNA Tetraloops? Are We There Yet?
J Chem Theory Comput. 2013 Apr 9;9(4):2115-25. doi: 10.1021/ct301086z. Epub 2013 Mar 7.
5
Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome.
J Phys Chem Lett. 2014 May 15;5(10):1771-82. doi: 10.1021/jz500557y. Epub 2014 May 7.
6
Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape.
RNA. 2014 Jul;20(7):1112-28. doi: 10.1261/rna.044982.114. Epub 2014 May 22.
8
Thio effects and an unconventional metal ion rescue in the genomic hepatitis delta virus ribozyme.
Biochemistry. 2013 Sep 17;52(37):6499-514. doi: 10.1021/bi4000673. Epub 2013 Sep 3.
9
Twenty-five years of nucleic acid simulations.
Biopolymers. 2013 Dec;99(12):969-77. doi: 10.1002/bip.22331.
10
Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study.
J Phys Chem B. 2012 Oct 25;116(42):12721-34. doi: 10.1021/jp309230v. Epub 2012 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验