Laboratory of Radiobiology & Biodosimetry, National Center for Scientific Research Demokritos, Athens, Greece.
Radiother Oncol. 2011 Oct;101(1):28-34. doi: 10.1016/j.radonc.2011.09.021. Epub 2011 Oct 18.
An increased yield of chromatid breaks following G2-phase irradiation could be a marker of radiosensitivity-predisposing genes that respond to DNA damage. We have shown that the dynamic nature of chromatin-nucleoprotein complex, which is capable of rapid unfolding, disassembling, assembling and refolding, affects repair of radiation-induced DNA-lesions and causes chromatid breaks during G2-M transition in damaged DNA sites. Here, we investigate induction and repair kinetics of chromatid breaks, their potential role in radiosensitivity predisposition and a standardized G2-assay is proposed to assess individual radiosensitivity.
Lymphocytes from 125 blood donors with significant inter-individual radiosensitivity variation (healthy, cancer, AT-patients) are used to correlate G2-checkpoint efficiency with chromatid breakage and individual radiosensitivity. Experiments involve repair kinetics of chromatid breaks using colcemid-block and treatment with caffeine to abrogate G2-checkpoint, generate internal controls and standardize the G2-assay.
Radiation-induced chromatid breaks during G2-M transition, following 4h repair, remained unchanged and a significant correlation between G2-chromosomal radiosensitivity and G2-checkpoint efficiency to prevent chromatid breakage was found. A standardized G2-assay is developed by introducing normalization to conditions reflecting lack of checkpoint and repair similar to those of AT-patients, generating a unique standard for individual radiosensitivity testing.
The standardized G2-assay can minimize inter-laboratory and intra-experimental variations and may have straightforward application in clinical practice for individualization of radiotherapy protocols.
G2 期照射后染色体断裂增加可能是对 DNA 损伤有反应的易感性基因的标志物。我们已经表明,染色质-核蛋白复合物的动态性质,其能够快速展开、解体、组装和重新折叠,会影响辐射诱导的 DNA 损伤的修复,并在受损 DNA 部位的 G2-M 转换过程中导致染色体断裂。在这里,我们研究了染色体断裂的诱导和修复动力学,及其在易感性倾向中的潜在作用,并提出了一种标准化的 G2 检测方法来评估个体的放射敏感性。
使用来自 125 名具有显著个体放射敏感性差异的血液供体(健康、癌症、ATR 患者)的淋巴细胞,将 G2 检查点效率与染色体断裂和个体放射敏感性相关联。实验涉及使用秋水仙素阻断和咖啡因处理来消除 G2 检查点,以产生内部对照并标准化 G2 检测,从而研究染色体断裂的修复动力学。
在 4 小时修复后,G2-M 转换过程中诱导的染色体断裂保持不变,并且发现 G2 染色体放射敏感性与防止染色体断裂的 G2 检查点效率之间存在显著相关性。通过引入对缺乏检查点和修复的条件的标准化来开发标准化的 G2 检测方法,这些条件反映了与 ATR 患者相似的条件,从而为个体放射敏感性测试生成独特的标准。
标准化的 G2 检测方法可以最大程度地减少实验室间和实验室内的差异,并可能在临床实践中直接应用于个体化放射治疗方案。