Advanced Robotics and Automated Systems (ARAS), Department of Systems and Control, Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology, P.O. Box 16315-1355, Tehran, 16314, Iran.
ISA Trans. 2012 Jan;51(1):146-52. doi: 10.1016/j.isatra.2011.09.003. Epub 2011 Oct 19.
In order to remedy the effects of modeling uncertainty, measurement noise and input disturbance on the performance of the standard state-dependent Riccati equation (SDRE) filter, a new robust H(∞) SDRE filter design is developed in this paper. Based on the infinity-norm minimization criterion, the proposed filter effectively estimates the states of nonlinear uncertain system exposed to unknown disturbance inputs. Moreover, by assuming a mild Lipschitz condition on the chosen state-dependent coefficient form, fulfillment of a modified H(∞) performance index is guaranteed in the proposed filter. The effectiveness of the robust SDRE filter is demonstrated through numerical simulations where it brilliantly outperforms the conventional SDRE filter in presence of model uncertainties, disturbance and measurement noise, in terms of estimation error and region of convergence.
为了弥补模型不确定性、测量噪声和输入干扰对标准状态依赖黎卡提方程(SDRE)滤波器性能的影响,本文提出了一种新的鲁棒 H(∞) SDRE 滤波器设计方法。基于无穷范数最小化准则,该滤波器有效地估计了受到未知干扰输入的非线性不确定系统的状态。此外,通过假设所选择的状态相关系数形式具有温和的 Lipschitz 条件,在提出的滤波器中保证了修改后的 H(∞)性能指标的实现。通过数值模拟验证了鲁棒 SDRE 滤波器的有效性,在存在模型不确定性、干扰和测量噪声的情况下,与传统的 SDRE 滤波器相比,它在估计误差和收敛区域方面表现出色。