Suppr超能文献

Hyperspectral target detection via discrete wavelet-based spectral fringe-adjusted joint transform correlation.

作者信息

Sakla Adel A, Sakla Wesam A, Alam Mohammad S

机构信息

Department of Electrical and Computer Engineering, University of South Alabama, Mobile, Alabama 36688, USA.

出版信息

Appl Opt. 2011 Oct 1;50(28):5545-54. doi: 10.1364/AO.50.005545.

Abstract

Spectral variability remains a major challenge for target detection in hyperspectral imagery (HSI). Recently, the spectral fringe-adjusted joint transform correlation (SFJTC) technique has been used effectively for hyperspectral target detection applications. In this paper, we propose to use discrete wavelet transform (DWT) coefficients of the signatures as features for detection in order to make the SFJTC technique more insensitive to spectral variability. We devised a supervised training algorithm that uses the pure target signature and randomly selected samples from input scenery to select an optimal set of DWT coefficients for detection. We have inserted target signatures into urban and vegetative hyperspectral scenery with varying levels of spectral variability to explore the performance of our DWT-based SFJTC technique in different operating conditions. Detection results in the form of receiver-operating-characteristic (ROC) curves and area-under-the-ROC (AUROC) curves show that the proposed scheme yields the largest mean AUROC values compared to SFJTC using the original signatures and traditional hyperspectral detection algorithms.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验