School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
J Am Chem Soc. 2011 Dec 14;133(49):19718-28. doi: 10.1021/ja207160z. Epub 2011 Nov 17.
Cis- and trans-1,2-dihydrodiol isomers of benzene undergo acid-catalyzed dehydration to form phenol. In principle the isomeric substrates react through a common β-hydroxybenzenium (cyclohexadienyl) carbocation. Notwithstanding, the isomers show a large difference in reactivity, k(cis)/k(trans) = 4500. This difference is reduced to k(cis)/k(trans) = 440 and 50 for the 1,2-dihydrodiols of naphthalene and 9,10-dihydrodiols of phenanthrene, respectively, and to 6.9 for the dihydrodiols of the nonaromatic 7,8-double bond of acenaphthylene. Because the difference in stabilities of cis- and trans-dihydrodiols should be no more than 2-3-fold, these results imply a high cis stereoselectivity for nucleophilic trapping of a β-hydroxyarenium cation by water in the reverse of the carbocation-forming reaction. This is confirmed by studies of the 10-hydroxy-9-phenanthrenium ion generated from aqueous solvolyses of the trans-9,10-bromohydrin derivative of phenanthrene and the monotrichloroacetate ester of the phenanthrene cis-9,10-dihydrodiol. The cis stereoselectivity of forward and reverse reactions is explained by the formation (in the "forward" reaction) of different conformations of carbocation from cis- and trans-dihydrodiol reactants with respectively β-C-H and β-C-OH bonds in pseudoaxial positions with respect to the charge center of the carbocation optimal for hyperconjugation. Formation of different conformations is constrained by departure of the (protonated) OH leaving group from a pseudoaxial position. The difference in stability of the carbocations is suggested to stem (a) from the greater hyperconjugative ability of a C-H than a C-OH bond and (b) from enhanced conjugation arising from the stabilizing influence of an aromatic ring in the no-bond resonance structures representing the hyperconjugation (C(6)H(6)OH(+) ↔ C(6)H(5)OH H(+)). This is consistent with an earlier suggestion by Mulliken and a demonstration by Schleyer that the benzenium ion is subject to hyperconjugative aromatic stabilization. It is proposed that, in analogy with the terms homoconjugation and homoaromaticity, arenium ions should be considered as "hyperaromatic".
顺式和反式-1,2-二氢二醇苯在酸催化下脱水形成苯酚。原则上,异构底物通过共同的β-羟苯鎓(环己二烯基)碳正离子反应。尽管如此,异构体的反应活性差异很大,k(cis)/k(trans)=4500。对于萘的 1,2-二氢二醇和菲的 9,10-二氢二醇,这种差异分别减小到 k(cis)/k(trans)=440 和 50,对于非芳香族的 acenaphthylene 的 7,8-双键的二氢二醇,这种差异减小到 6.9。由于顺式和反式-二氢二醇的稳定性差异不应超过 2-3 倍,这些结果表明,在碳正离子形成反应的逆反应中,水对β-羟芳鎓阳离子的亲核捕获具有很高的顺式立体选择性。这一点通过研究从菲的反式-9,10-溴醇衍生物和菲的顺式-9,10-二氢二醇的单三氯乙酸酯酯在水溶液中的溶剂解生成的 10-羟基-9-菲翁离子得到证实。顺式和反式反应的顺式立体选择性可以通过从顺式和反式-二氢二醇反应物形成不同构象的碳正离子来解释,其中β-C-H 和β-C-OH 键分别处于相对于碳正离子电荷中心的假轴向位置,这对于超共轭是最佳的。不同构象的形成受到(质子化的)离去基团 OH 离开假轴向位置的限制。碳正离子的稳定性差异被认为源自(a)C-H 键的超共轭能力大于 C-OH 键,以及(b)来自于无键共振结构中芳香环的稳定影响的增强共轭,这些共振结构代表了超共轭(C(6)H(6)OH(+) ↔ C(6)H(5)OH H(+))。这与 Mulliken 的早期建议和 Schleyer 的证明一致,即苯鎓离子受到超共轭芳香稳定化的影响。有人建议,类似于同共轭和同芳香性的术语,芳鎓离子应该被认为是“超芳香性”的。