School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
J Am Chem Soc. 2011 Dec 14;133(49):19729-42. doi: 10.1021/ja2071626. Epub 2011 Nov 17.
Measurements of pK(R) show that the cycloheptadienyl cation is less stable than the cyclohexadienyl (benzenium) cation by 18 kcal mol(-1). This difference is ascribed here to "hyperaromaticity" of the latter. For the cycloheptadienyl cation a value of K(R) = [ROH][H(+)]/[R(+)] is assigned by combining a rate constant for reaction of the cation with water based on the azide clock with a rate constant for the acid-catalyzed formation of the cation accompanying equilibration of cycloheptadienol with its trifluoroethyl ether in TFE-water mixtures. Comparison of pK(R) = -16.1 with pK(R) = -2.6 for the cyclohexadienyl cation yields the difference in stabilities of the two ions. Interpretation of this difference in terms of hyperconjugative aromaticity is supported by the effect of benzannelation in reducing pK(R) for the benzenium ion: from -2.6 down to -3.5 for the 1H-naphthalenium and -6.0 for the 9H-anthracenium ions, respectively. MP2/6-311+G** and G3MP2 calculations of hydride ion affinities of benzenium ions show an order of stabilities for substituents at the methylene group consistent with their hyperconjugative abilities, i.e., (H(3)Si)(2) > cyclopropyl > H(2) > Me(2)> (HO)(2) > F(2). Calculations of ring currents show a similar ordering. No conventional ring current is seen for the cycloheptadienyl cation, whereas currents in the F(2)-substituted benzenium ion are consistent with antiaromaticity. Arenium ions where the methylene group is substituted with a single OH group show characteristic energy differences between conformations, with C-H or C-OH bonds respectively occupying or constrained to axial positions favorable to hyperconjugation. The differences were found to be 8.8, 6.3, 2.4, and 0.4 kcal mol(-1) for benzenium, naphthalenium, phenanthrenium, and cyclohexenyl cations, respectively.
pK(R) 的测量表明,环庚二烯阳离子比环己二烯(苯鎓)阳离子不稳定,相差 18 kcal mol(-1)。这里将这种差异归因于后者的“超芳香性”。对于环庚二烯阳离子,通过将基于叠氮时钟的阳离子与水反应的速率常数与在 TFE-水混合物中环庚二烯醇与其三氟乙基醚平衡伴随的阳离子酸催化形成的速率常数结合起来,指定了 K(R) = [ROH][H(+)]/[R(+)]的值。将 pK(R) = -16.1 与 pK(R) = -2.6 比较,得出了两种离子稳定性的差异。超共轭芳香性对这一差异的解释得到了苯鎓离子中苯环取代对 pK(R)的影响的支持:从 1H-萘鎓离子的 -2.6 降低到 -3.5,9H-蒽鎓离子的 -6.0。苯鎓离子的氢化物离子亲合能的 MP2/6-311+G**和 G3MP2 计算表明,亚甲基上取代基的稳定性顺序与其超共轭能力一致,即 (H(3)Si)(2) > 环丙基 > H(2) > Me(2)> (HO)(2) > F(2)。环电流的计算也显示出类似的顺序。对于环庚二烯阳离子,没有看到传统的环电流,而在 F(2)取代的苯鎓离子中,电流与反芳香性一致。亚甲基被单个 OH 基团取代的芳烃离子显示出构象之间的特征能量差异,C-H 或 C-OH 键分别占据或约束在有利于超共轭的轴向位置。对于苯鎓、萘鎓、菲鎓和环己烯鎓离子,分别发现这些差异为 8.8、6.3、2.4 和 0.4 kcal mol(-1)。