Suppr超能文献

Testing for group structure in high-dimensional data.

作者信息

McLachlan G J, Rathnayake Suren I

机构信息

Department of Mathematics, University of Queensland, St. Lucia, Queensland, Australia.

出版信息

J Biopharm Stat. 2011 Nov;21(6):1113-25. doi: 10.1080/10543406.2011.608342.

Abstract

With the use of finite mixture models for the clustering of a data set, the crucial question of how many clusters there are in the data can be addressed by testing for the smallest number of components in the mixture model compatible with the data. We investigate the performance of a resampling approach to this latter problem in the context of high-dimensional data, where the number of variables p is extremely large relative to the number of observations n. In order to be able to fit normal mixture models to such data, some form of dimension reduction has to be performed. This raises the question of whether a practically significant bias results if the bootstrapping is undertaken solely on the basis of the reduced dimensional form of the data, rather than using the full data from which to draw the bootstrap sample replications.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验