Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
Exp Hematol. 2012 Feb;40(2):131-42.e4. doi: 10.1016/j.exphem.2011.10.006. Epub 2011 Oct 21.
The pathobiological role of p53 has been widely studied, however, its role in normophysiology is relatively unexplored. We previously showed that p53 knock-down increased ploidy in megakaryocytic cultures. This study aims to examine the effect of p53 loss on in vivo megakaryopoiesis, platelet production, and function, and to investigate the basis for greater ploidy in p53(-/-) megakaryocytic cultures. Here, we used flow cytometry to analyze ploidy, DNA synthesis, and apoptosis in murine cultured and bone marrow megakaryocytes following thrombopoietin administration and to analyze fibrinogen binding to platelets in vitro. Culture of p53(-/-) marrow cells for 6 days with thrombopoietin gave rise to 1.7-fold more megakaryocytes, 26.1% ± 3.6% of which reached ploidy classes ≥64 N compared to 8.2% ± 0.9% of p53(+/+) megakaryocytes. This was due to 30% greater DNA synthesis in p53(-/-) megakaryocytes and 31% greater apoptosis in p53(+/+) megakaryocytes by day 4 of culture. Although the bone marrow and spleen steady-state megakaryocytic content and ploidy were similar in p53(+/+) and p53(-/-) mice, thrombopoietin administration resulted in increased megakaryocytic polyploidization in p53(-/-) mice. Although their platelet counts were normal, p53(-/-) mice exhibited significantly longer bleeding times and p53(-/-) platelets were less sensitive than p53(+/+) platelets to agonist-induced fibrinogen binding and P-selectin secretion. In summary, our in vivo and ex vivo studies indicate that p53 loss leads to increased polyploidization during megakaryopoiesis. Our findings also suggest for the first time a direct link between p53 loss and the development of fully functional platelets resulting in hemostatic deficiencies.
p53 的病理生物学作用已得到广泛研究,但其在正常生理学中的作用相对尚未得到探索。我们之前的研究表明,p53 敲低会增加巨核细胞培养物中的倍性。本研究旨在研究 p53 缺失对体内巨核细胞生成、血小板生成和功能的影响,并探讨 p53(-/-)巨核细胞培养物中更高倍性的基础。在这里,我们使用流式细胞术分析了血小板生成素给药后培养和骨髓巨核细胞的倍性、DNA 合成和细胞凋亡,并分析了体外纤维蛋白原与血小板的结合。用血小板生成素培养 p53(-/-)骨髓细胞 6 天,导致巨核细胞增加 1.7 倍,其中 26.1%±3.6%达到≥64N 的倍性,而 p53(+/+)巨核细胞的这一比例为 8.2%±0.9%。这是由于 p53(-/-)巨核细胞的 DNA 合成增加了 30%,而 p53(+/+)巨核细胞的凋亡增加了 31%。尽管 p53(+/+)和 p53(-/-)小鼠的骨髓和脾脏稳态巨核细胞含量和倍性相似,但血小板生成素给药导致 p53(-/-)小鼠的巨核细胞多倍体化增加。尽管 p53(-/-)小鼠的血小板计数正常,但它们的出血时间明显延长,p53(-/-)血小板对激动剂诱导的纤维蛋白原结合和 P-选择素分泌的敏感性低于 p53(+/+)血小板。总之,我们的体内和体外研究表明,p53 缺失会导致巨核细胞生成过程中多倍体化增加。我们的研究结果还首次表明,p53 缺失与完全功能血小板的发育之间存在直接联系,导致止血缺陷。