Department of Chemistry, Hunter College CUNY, New York, New York 10065, USA.
Acc Chem Res. 2011 Dec 20;44(12):1320-8. doi: 10.1021/ar2001149. Epub 2011 Oct 25.
Messenger RNAs (mRNAs) are emerging as prime targets for small-molecule drugs. They afford an opportunity to assert control over an enormous range of biological processes: mRNAs regulate protein synthesis rates, have specific 3-D regulatory structures, and, in nucleated cells, are separated from DNA in space and time. All of the many steps between DNA copying (transcription) and ribosome binding (translation) represent potential control points. Messenger RNAs can fold into complex, 3-D shapes, such as tRNAs and rRNAs, providing an added dimension to the 2-D RNA structure (base pairing) targeted in many mRNA interference approaches. In this Account, we describe the structural and functional properties of the IRE (iron-responsive element) family, one of the few 3-D mRNA regulatory elements with known 3-D structure. This family of related base sequences regulates the mRNAs that encode proteins for iron metabolism. We begin by considering the IRE-RNA structure, which consists of a short (~30-nucleotide) RNA helix. Nature tuned the structure by combining a conserved AGU pseudotriloop, a closing C-G base pair, and a bulge C with various RNA helix base pairs. The result is a set of IRE-mRNAs with individual iron responses. The physiological iron signal is hexahydrated ferrous ion; in vivo iron responses vary over 10-fold depending on the individual IRE-RNA structure. We then discuss the interaction between the IRE-RNA structure and the proteins associated with it. IRE-RNA structures, which are usually noncoding, tightly bind specific proteins called IRPs. These repressor proteins are bound to IRE-RNA through C-bulge and AGU contacts that flip out a loop AG and a bulge C, bending the RNA helix. After binding, the exposed RNA surface then invites further interactions, such as with iron and other proteins. Binding of the IRE-RNA and the IRP also changes the IRP conformation. IRP binding stabilities vary 10-fold within the IRE family, reflecting individual IRE-RNA paired and unpaired bases. This variation contributes to the graded (hierarchical) iron responses in vivo. We also consider the mechanisms of IRE-mRNA control. The binding of Fe(2+) to IRE-RNA facilitates IRP release and the binding of eukaryotic initiation factors (eIFs), which are proteins that assemble mRNA, ribosomes, and tRNA for translation. IRE-RNAs are riboregulators for the inorganic metabolic signal, Fe(2+); they control protein synthesis rates by changing the distribution of the iron metabolic mRNAs between complexes with enhancing eIFs and inhibitory IRPs. The regulation of mRNA in the cytoplasm of eukaryotic cells is a burgeoning frontier in biomedicine. The evolutionarily refined IRE-RNAs, although absent in plants and bacteria, constitute a model system for 3-D mRNAs in all organisms. IRE-mRNAs have yielded "proof of principle" data for small-molecule targeting of mRNA structures, demonstrating tremendous potential for chemical manipulation of mRNA and protein synthesis in living systems.
信使 RNA(mRNA)正成为小分子药物的主要靶标。它们为控制广泛的生物过程提供了机会:mRNA 调节蛋白质合成速率,具有特定的 3-D 调节结构,并且在有核细胞中,mRNA 在空间和时间上与 DNA 分离。从 DNA 复制(转录)到核糖体结合(翻译)的所有许多步骤都是潜在的控制点。信使 RNA 可以折叠成复杂的 3-D 形状,如 tRNA 和 rRNA,为许多 mRNA 干扰方法靶向的 2-D RNA 结构(碱基配对)提供了额外的维度。在本报告中,我们描述了 IRE(铁反应元件)家族的结构和功能特性,IRE 是少数具有已知 3-D 结构的 3-D mRNA 调节元件之一。该家族的相关碱基序列调节编码铁代谢蛋白的 mRNA。我们首先考虑 IRE-RNA 结构,它由一个短 (~30 个核苷酸) 的 RNA 螺旋组成。自然界通过组合保守的 AGU 假三螺旋、闭合的 C-G 碱基对和带有各种 RNA 螺旋碱基对的凸起 C 来调整结构。结果是一组具有个体铁反应的 IRE-mRNA。生理铁信号是六水合亚铁离子;体内铁反应因个体 IRE-RNA 结构而异,变化幅度超过 10 倍。然后,我们讨论了 IRE-RNA 结构与与其相关联的蛋白质之间的相互作用。通常是非编码的 IRE-RNA 结构紧密结合称为 IRP 的特定蛋白质。这些阻遏蛋白通过 C 凸起和 AGU 接触与 IRE-RNA 结合,翻转出一个环 AG 和一个凸起 C,使 RNA 螺旋弯曲。结合后,暴露的 RNA 表面然后邀请进一步的相互作用,例如与铁和其他蛋白质的相互作用。IRE-RNA 和 IRP 的结合也改变了 IRP 的构象。IRE 家族内 IRP 结合稳定性变化 10 倍,反映了个体 IRE-RNA 的配对和未配对碱基。这种变化有助于体内分级(分层)的铁反应。我们还考虑了 IRE-mRNA 控制的机制。Fe(2+)与 IRE-RNA 的结合促进了 IRP 的释放和真核起始因子 (eIFs) 的结合,eIFs 是将 mRNA、核糖体和 tRNA 组装用于翻译的蛋白质。IRE-RNAs 是无机代谢信号 Fe(2+)的核糖调节物;它们通过改变铁代谢 mRNA 与增强 eIFs 和抑制 IRP 的复合物之间的分布来控制蛋白质合成速率。真核细胞中 mRNA 的调控是生物医学的一个新兴前沿领域。虽然在植物和细菌中不存在进化上精细的 IRE-RNAs,但它们构成了所有生物体 3-D mRNA 的模型系统。IRE-mRNAs 为小分子靶向 mRNA 结构提供了“原理证明”数据,为在活系统中对 mRNA 和蛋白质合成进行化学操纵提供了巨大的潜力。