Department of Physics, FMF, University of Ljubljana, Slovenia.
Phys Rev Lett. 2011 Sep 23;107(13):137201. doi: 10.1103/PhysRevLett.107.137201. Epub 2011 Sep 19.
An exact and explicit ladder-tensor-network ansatz is presented for the nonequilibrium steady state of an anisotropic Heisenberg XXZ spin-1/2 chain which is driven far from equilibrium with a pair of Lindblad operators acting on the edges of the chain only. We show that the steady-state density operator of a finite system of size n is-apart from a normalization constant-a polynomial of degree 2n - 2 in the coupling constant. Efficient computation of physical observables is facilitated in terms of a transfer operator reminiscent of a classical Markov process. In the isotropic case we find cosine spin profiles, 1/n(2) scaling of the spin current, and long-range correlations in the steady state. This is a fully nonperturbative extension of a recent result [Phys. Rev. Lett. 106, 217206 (2011)].
我们提出了一个精确且明确的梯张量网络假设,用于描述在仅有两个 Lindblad 算符作用于链边缘的情况下,处于非平衡稳态的各向异性海森堡 XXZ 自旋 1/2 链。我们表明,有限系统的稳态密度算符(除了归一化常数外)是耦合常数的 2n-2 次多项式。通过类似于经典马尔可夫过程的转移算符,可以方便地计算物理可观测量。在各向同性情况下,我们发现了余弦自旋分布、自旋流的 1/n(2) 标度以及稳态中的长程相关。这是最近的一个结果[Phys. Rev. Lett. 106, 217206 (2011)]的完全非微扰扩展。