Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261.
J Biol Chem. 2011 Dec 23;286(51):43611-43621. doi: 10.1074/jbc.M111.288928. Epub 2011 Oct 25.
The thiazide-sensitive NaCl cotransporter (NCC, SLC12A3) mediates salt reabsorption in the distal nephron of the kidney and is the target of thiazide diuretics, which are commonly prescribed to treat hypertension. Mutations in NCC also give rise to Gitelman syndrome, a hereditary salt-wasting disorder thought in most cases to arise from impaired NCC biogenesis through enhanced endoplasmic reticulum-associated degradation (ERAD). Because the machinery that mediates NCC quality control is completely undefined, we employed yeast as a model heterologous expression system to identify factors involved in NCC degradation. We confirmed that NCC was a bona fide ERAD substrate in yeast, as the majority of NCC polypeptide was integrated into ER membranes, and its turnover rate was sensitive to proteasome inhibition. NCC degradation was primarily dependent on the ER membrane-associated E3 ubiquitin ligase Hrd1. Whereas several ER luminal chaperones were dispensable for NCC ERAD, NCC ubiquitination and degradation required the activity of Ssa1, a cytoplasmic Hsp70 chaperone. Compatible findings were observed when NCC was expressed in mammalian kidney cells, as the cotransporter was polyubiquitinated and degraded by the proteasome, and mammalian cytoplasmic Hsp70 (Hsp72) coexpression stimulated the degradation of newly synthesized NCC. Hsp70 also preferentially associated with the ER-localized NCC glycosylated species, indicating that cytoplasmic Hsp70 plays a critical role in selecting immature forms of NCC for ERAD. Together, these results provide the first survey of components involved in the ERAD of a mammalian SLC12 cation chloride cotransporter and provide a framework for future studies on NCC ER quality control.
噻嗪类敏感的 NaCl 共转运蛋白(NCC,SLC12A3)介导肾脏远曲小管中的盐重吸收,是噻嗪类利尿剂的作用靶点,噻嗪类利尿剂常用于治疗高血压。NCC 的突变也会引起 Gitelman 综合征,这是一种遗传性盐耗失疾病,在大多数情况下,认为是由于增强的内质网相关降解(ERAD)导致 NCC 生物发生受损而引起的。由于介导 NCC 质量控制的机制尚未完全确定,我们利用酵母作为模型异源表达系统来鉴定参与 NCC 降解的因素。我们证实 NCC 是酵母中真正的 ERAD 底物,因为 NCC 多肽的大部分整合到 ER 膜中,其周转率对蛋白酶体抑制敏感。NCC 降解主要依赖于 ER 膜相关的 E3 泛素连接酶 Hrd1。虽然几种 ER 腔伴侣对于 NCC 的 ERAD 是可有可无的,但 NCC 的泛素化和降解需要细胞质 Hsp70 伴侣 Ssa1 的活性。当 NCC 在哺乳动物肾脏细胞中表达时,观察到了类似的结果,因为共转运蛋白被多泛素化并被蛋白酶体降解,并且哺乳动物细胞质 Hsp70(Hsp72)的共表达刺激了新合成的 NCC 的降解。Hsp70 还优先与定位于 ER 的 NCC 糖基化物种结合,表明细胞质 Hsp70 在选择 NCC 的未成熟形式进行 ERAD 中起着关键作用。总之,这些结果首次调查了哺乳动物 SLC12 阳离子氯共转运蛋白 ERAD 中涉及的成分,并为 NCC ER 质量控制的进一步研究提供了框架。