Suppr超能文献

超临界 Lennard-Jones 冻结转变的精确模拟。

Precise simulation of the freezing transition of supercritical Lennard-Jones.

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA.

出版信息

J Chem Phys. 2011 Oct 21;135(15):154103. doi: 10.1063/1.3651193.

Abstract

The fluid-solid transition of the Lennard-Jones model is analyzed along a supercritical isotherm. The analysis is implemented via a simulation method which is based on a modification of the constrained cell model of Hoover and Ree. In the context of hard-sphere freezing, Hoover and Ree simulated the solid phase using a constrained cell model in which each particle is confined within its own Wigner-Seitz cell. Hoover and Ree also proposed a modified cell model by considering the effect of an external field of variable strength. High-field values favor configurations with a single particle per Wigner-Seitz cell and thus stabilize the solid phase. In previous work, a simulation method for freezing transitions, based on constant-pressure simulations of the modified cell model, was developed and tested on a system of hard spheres. In the present work, this method is used to determine the freezing transition of a Lennard-Jones model system on a supercritical isotherm at a reduced temperature of 2. As in the case of hard spheres, constant-pressure simulations of the fully occupied constrained cell model of a system of Lennard-Jones particles indicate a point of mechanical instability at a density which is approximately 70% of the density at close packing. Furthermore, constant-pressure simulations of the modified cell model indicate that as the strength of the field is reduced, the transition from the solid to the fluid is continuous below the mechanical instability point and discontinuous above. The fluid-solid transition of the Lennard-Jones system is obtained by analyzing the field-induced fluid-solid transition of the modified cell model in the high-pressure, zero-field limit. The simulations are implemented under constant pressure using tempering and histogram reweighting techniques. The coexistence pressure and densities are determined through finite-size scaling techniques for first-order phase transitions which are based on analyzing the size-dependent behavior of susceptibilities and dimensionless moment ratios of the order parameter.

摘要

沿超临界等温线分析 Lennard-Jones 模型的流固转变。分析通过基于 Hoover 和 Ree 的约束单元模型的修改的模拟方法来执行。在硬球冻结的背景下,Hoover 和 Ree 使用约束单元模型模拟固相,其中每个粒子都被限制在其自己的威格纳-塞茨单元内。Hoover 和 Ree 还通过考虑可变强度的外部场的影响提出了改进的单元模型。高场值有利于具有单个粒子的每个威格纳-塞茨单元的配置,从而稳定固相。在之前的工作中,基于改进的单元模型的恒压模拟,开发了一种用于冻结转变的模拟方法,并在硬球系统上进行了测试。在本工作中,该方法用于在 2 的缩减温度下确定 Lennard-Jones 模型系统在超临界等温线上的冻结转变。与硬球的情况一样,全占据约束单元模型的恒压模拟表明,在密度约为密堆积密度的 70%时,系统会出现力学不稳定性点。此外,改进的单元模型的恒压模拟表明,随着场强的降低,在力学不稳定性点以下,从固相到流体的转变是连续的,而在点以上是不连续的。通过分析高压、零场极限下改进单元模型的场诱导固-液转变,获得 Lennard-Jones 系统的固-液转变。模拟在恒压下使用回火和直方图重新加权技术进行。通过基于分析标度依赖的各向异性和无量纲矩比的大小相关行为的一阶相变的有限尺寸标度技术,确定共存压力和密度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验