Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
J Chem Phys. 2011 Oct 21;135(15):154507. doi: 10.1063/1.3651101.
Generating dipolar order under magic-angle spinning (MAS) conditions is explored for different pulse sequences and dipolar-coupling networks. It is shown that under MAS second-order dipolar order can be generated reliably with 10% to 30% efficiency using the Jeener-Broekaert sequence in systems where the second-order average Hamiltonian is a (near) constant of the motion. When using adiabatic demagnetization and remagnetization, second-order dipolar order can be generated and reverted back to Zeeman order with up to 60% efficiency. This requires a maximum field strength with a nutation frequency that is less than one-quarter of the rotor frequency, and that the spin system can be properly spinlocked under such conditions. A simple coherent description accounts for the principal features of the spin dynamics, even using the smallest possible system of three coupled spins. For the systems investigated, the lifetime of second-order dipolar order under MAS was found to be on the order of T(1).
在魔角旋转(MAS)条件下探索不同脉冲序列和偶极耦合网络下的偶极有序生成。结果表明,在 MAS 下,当二阶平均哈密顿量是运动的(近)常数时,使用 Jeener-Broekaert 序列可以可靠地以 10%至 30%的效率生成二阶偶极有序。当使用绝热去磁和再磁化时,可以生成二阶偶极有序,并以高达 60%的效率反转回塞曼有序。这需要一个最大场强,其进动频率小于转子频率的四分之一,并且自旋系统在这种条件下可以被适当的自旋锁定。即使使用最小的三个耦合自旋系统,简单的相干描述也可以说明自旋动力学的主要特征。对于所研究的系统,在 MAS 下二阶偶极有序的寿命被发现大约为 T(1)。