Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, USA.
Malar J. 2011 Oct 26;10:318. doi: 10.1186/1475-2875-10-318.
Anopheles stephensi mitochondrial malic enzyme (ME) emerged as having a relevant role in the provision of pyruvate for the Krebs' cycle because inhibition of this enzyme results in the complete abrogation of oxygen uptake by mitochondria. Therefore, the identification of ME in mitochondria from immortalized A. stephensi (ASE) cells and the investigation of the stereoselectivity of malate analogues are relevant in understanding the physiological role of ME in cells of this important malaria parasite vector and its potential as a possible novel target for insecticide development.
To characterize the mitochondrial ME from immortalized ASE cells (Mos. 43; ASE), mass spectrometry analyses of trypsin fragments of ME, genomic sequence analysis and biochemical assays were performed to identify the enzyme and evaluate its activity in terms of cofactor dependency and inhibitor preference.
The encoding gene sequence and primary sequences of several peptides from mitochondrial ME were found to be highly homologous to the mitochondrial ME from Anopheles gambiae (98%) and 59% homologous to the mitochondrial NADP+-dependent ME isoform from Homo sapiens. Measurements of ME activity in mosquito mitochondria isolated from ASE cells showed that (i) Vmax with NAD+ was 3-fold higher than that with NADP+, (ii) addition of Mg2+ or Mn2+ increased the Vmax by 9- to 21-fold, with Mn2+ 2.3-fold more effective than Mg2+, (iii) succinate and fumarate increased the activity by 2- and 5-fold, respectively, at sub-saturating concentrations of malate, (iv) among the analogs of L-malate tested as inhibitors of the NAD+-dependent ME catalyzed reaction, small (2- to 3-carbons) organic diacids carrying a 2-hydroxyl/keto group behaved as the most potent inhibitors of ME activity (e.g., oxaloacetate, tartronic acid and oxalate).
The biochemical characterization of Anopheles stephensi ME is of critical relevance given its important role in bioenergetics, suggesting that it is a suitable target for insecticide development.
斯氏按蚊线粒体苹果酸酶(ME)为丙酮酸进入三羧酸循环提供了重要作用,因为该酶的抑制作用会导致线粒体完全停止摄取氧气。因此,鉴定出不朽化斯氏按蚊(ASE)细胞中的 ME 以及研究苹果酸类似物的立体选择性,对于了解 ME 在这种重要疟原虫传播媒介细胞中的生理作用及其作为杀虫剂开发的可能新靶标具有重要意义。
为了鉴定不朽化 ASE 细胞(Mos. 43;ASE)中的线粒体 ME,对 ME 的胰蛋白酶片段进行了质谱分析、基因组序列分析和生化测定,以鉴定该酶并根据辅助因子依赖性和抑制剂偏好来评估其活性。
发现线粒体 ME 的编码基因序列和来自几种肽的一级序列与冈比亚按蚊(98%)的线粒体 ME 以及与人类的 NADP+-依赖性线粒体 ME 同工型高度同源(59%)。从 ASE 细胞分离的蚊子线粒体中 ME 活性的测量表明:(i)以 NAD+为底物时的 Vmax 比以 NADP+为底物时高 3 倍,(ii)添加 Mg2+或 Mn2+可使 Vmax 增加 9 至 21 倍,其中 Mn2+的效果比 Mg2+高 2.3 倍,(iii)在亚饱和浓度的苹果酸下,琥珀酸和富马酸分别使活性增加 2 倍和 5 倍,(iv)在所测试的作为 NAD+-依赖性 ME 催化反应抑制剂的 L-苹果酸类似物中,携带 2-羟基/酮基的小(2-3 碳)有机二羧酸作为最有效的 ME 活性抑制剂(例如,草酰乙酸、酒石酸和草酸)。
鉴于其在生物能量学中的重要作用,斯氏按蚊 ME 的生化特征具有至关重要的意义,表明它是杀虫剂开发的合适靶标。