Riesz P, Kondo T, Krishna C M
Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.
Ultrasonics. 1990 Sep;28(5):295-303. doi: 10.1016/0041-624x(90)90035-m.
Recent spin trapping studies of the free radical intermediates generated by the sonolysis of aqueous solutions are reviewed. Studies of rare gas saturated solutions of volatile solutes (e.g., methanol and ethanol) and of non-volatile solutes (acetate, amino acids, sugars, pyrimidines, nucleotides and surfactants) are consistent with the theory of three reaction zones in aqueous sonochemistry. The very high temperatures and pressures induced by acoustic cavitation in collapsing gas bubbles in aqueous solutions lead to the thermal dissociation of water vapour into hydrogen atoms and hydroxyl radicals. Reactions take place in the gas phase (pyrolysis reactions), in the region of the gas-liquid interface, and in the bulk of the solution at ambient temperature (similar to radiation chemistry reactions). By use of the rare gases with different thermal conductivities, the contributions of individual reaction steps with widely different energies of activation can be evaluated.
本文综述了近期关于水溶液声解产生的自由基中间体的自旋捕获研究。对挥发性溶质(如甲醇和乙醇)以及非挥发性溶质(乙酸盐、氨基酸、糖、嘧啶、核苷酸和表面活性剂)的稀有气体饱和溶液的研究与水相声化学中三个反应区的理论相一致。水溶液中塌陷气泡内的声空化所引发的极高温度和压力会导致水蒸气热分解为氢原子和羟基自由基。反应发生在气相(热解反应)、气液界面区域以及室温下的溶液主体中(类似于辐射化学反应)。通过使用具有不同热导率的稀有气体,可以评估具有广泛不同活化能的各个反应步骤的贡献。