Suppr超能文献

通过计算机模拟离子云运动计算傅里叶变换离子回旋共振质谱的分辨率和动态范围限制。

Fourier transform ion cyclotron resonance mass resolution and dynamic range limits calculated by computer modeling of ion cloud motion.

机构信息

The Institute for Energy Problems of Chemical Physics, Russian Academy of Science, Moscow 119334, Russian Federation.

出版信息

J Am Soc Mass Spectrom. 2012 Feb;23(2):375-84. doi: 10.1007/s13361-011-0268-8. Epub 2011 Oct 27.

Abstract

Particle-in-Cell (PIC) ion trajectory calculations provide the most realistic simulation of Fourier transform ion cyclotron resonance (FT-ICR) experiments by efficient and accurate calculation of the forces acting on each ion in an ensemble (cloud), including Coulomb interactions (space charge), the electric field of the ICR trap electrodes, image charges on the trap electrodes, the magnetic field, and collisions with neutral gas molecules. It has been shown recently that ion cloud collective behavior is required to generate an FT-ICR signal and that two main phenomena influence mass resolution and dynamic range. The first is formation of an ellipsoidal ion cloud (termed "condensation") at a critical ion number (density), which facilitates signal generation in an FT-ICR cell of arbitrary geometry because the condensed cloud behaves as a quasi-ion. The second phenomenon is peak coalescence. Ion resonances that are closely spaced in m/z coalesce into one resonance if the ion number (density) exceeds a threshold that depends on magnetic field strength, ion cyclotron radius, ion masses and mass difference, and ion initial spatial distribution. These two phenomena decrease dynamic range by rapid cloud dephasing at small ion density and by cloud coalescence at high ion density. Here, we use PIC simulations to quantitate the dependence of coalescence on each critical parameter. Transitions between independent and coalesced motion were observed in a series of the experiments that systematically varied ion number, magnetic field strength, ion radius, ion m/z, ion m/z difference, and ion initial spatial distribution (the present simulations begin from elliptically-shaped ion clouds with constant ion density distribution). Our simulations show that mass resolution is constant at a given magnetic field strength with increasing ion number until a critical value (N) is reached. N dependence on magnetic field strength, cyclotron radius, ion mass, and difference between ion masses was determined for two ion ensembles of different m/z, equal abundance, and equal cyclotron radius. We find that N and dynamic range depend quadratically on magnetic field strength in the range 1-21 Tesla. Dependences on cyclotron radius and Δm/z are linear. N depends on m/z as (m/z)(-2). Empirical expressions for mass resolution as a function of each of the experimental parameters are presented. Here, we provide the first exposition of the origin and extent of trade-off between FT-ICR MS dynamic range and mass resolution (defined not as line width, but as the separation between the most closely resolved masses).

摘要

通过高效准确地计算作用在云(ensemble)中每个离子的力,粒子在细胞(PIC)离子轨道计算为傅里叶变换离子回旋共振(FT-ICR)实验提供了最真实的模拟,包括库仑相互作用(空间电荷)、ICR 陷阱电极的电场、陷阱电极的镜像电荷、磁场和与中性气体分子的碰撞。最近已经表明,离子云的集体行为是产生 FT-ICR 信号所必需的,并且有两个主要现象会影响质量分辨率和动态范围。第一个现象是在临界离子数(密度)下形成椭球离子云(称为“凝聚”),这有利于在任意几何形状的 FT-ICR 单元中产生信号,因为凝聚云表现为准离子。第二个现象是峰合并。如果离子数(密度)超过取决于磁场强度、离子回旋半径、离子质量和质量差以及离子初始空间分布的阈值,则在 m/z 上紧密间隔的离子共振将合并为一个共振。这两个现象通过在小离子密度下快速云去相位和在高离子密度下云合并来降低动态范围。在这里,我们使用 PIC 模拟来定量测量合并对每个临界参数的依赖性。在一系列系统地改变离子数、磁场强度、离子半径、离子 m/z、离子 m/z 差和离子初始空间分布的实验中观察到独立运动和合并运动之间的转变(目前的模拟从具有恒定离子密度分布的椭圆形离子云开始)。我们的模拟表明,在给定的磁场强度下,随着离子数的增加,分辨率保持不变,直到达到临界值(N)。确定了两个不同 m/z、相同丰度和相同回旋半径的离子集合的 N 对磁场强度、回旋半径、离子质量和离子质量差的依赖性。我们发现,N 和动态范围与磁场强度的关系为二次方,磁场强度范围为 1-21 特斯拉。对回旋半径和Δm/z 的依赖性是线性的。N 与 m/z 的关系为(m/z)(-2)。提出了质量分辨率作为每个实验参数函数的经验表达式。在这里,我们首次阐述了 FT-ICR MS 动态范围和质量分辨率(不是定义为线宽,而是定义为最接近分辨率的质量之间的分离)之间的权衡的起源和程度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验