Villiers Benoit, Hollfelder Florian
Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
Chem Biol. 2011 Oct 28;18(10):1290-9. doi: 10.1016/j.chembiol.2011.06.014.
Modular natural products are biosynthesized by series of enzymes that activate, assemble, and process a nascent chain of building blocks. Adenylation domains are gatekeepers in nonribosomal peptide biosynthesis, providing the entry point for assembly of typical peptide-based natural products. We report the directed evolution of an adenylation domain based on a strategy of using a weak, promiscuous activity as a springboard for reprogramming the biosynthetic assembly line. Randomization of residues invoked in a "specificity-conferring code" and selection for a non-native substrate lead to mutant G2.1, favoring smaller amino acids with a specificity change of 10(5): a 170-fold improvement for L-alanine corresponds to a 10(3)-fold decrease for its original substrate (L-phenylalanine). These results establish directed evolution as a method to change gatekeeper domain specificity and suggest that adaptation of modules in combinatorial biosynthesis is achievable with few mutations during evolution.
模块化天然产物是由一系列激活、组装和加工新生构建模块链的酶生物合成的。腺苷化结构域是非核糖体肽生物合成中的守门人,为典型肽基天然产物的组装提供入口点。我们报道了基于一种策略的腺苷化结构域的定向进化,该策略利用弱的、混杂的活性作为重新编程生物合成装配线的跳板。对“赋予特异性密码”中涉及的残基进行随机化处理,并选择非天然底物,从而得到突变体G2.1,它更倾向于较小的氨基酸,特异性变化为10(5):对L-丙氨酸的特异性提高了170倍,而对其原始底物(L-苯丙氨酸)的特异性则降低了10(3)倍。这些结果确立了定向进化作为一种改变守门结构域特异性的方法,并表明在进化过程中通过很少的突变就可以实现组合生物合成中模块的适应性调整。