Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20982-1065, USA.
Neuroimage. 2012 Feb 1;59(3):2073-87. doi: 10.1016/j.neuroimage.2011.10.042. Epub 2011 Oct 20.
We propose a set of algorithms for sequentially removing artifacts related to MRI gradient switching and cardiac pulsations from electroencephalography (EEG) data recorded during functional magnetic resonance imaging (fMRI). Special emphasis is directed upon the use of statistical metrics and methods for the extraction and selection of features that characterize gradient and pulse artifacts. To remove gradient artifacts, we use channel-wise filtering based on singular value decomposition (SVD). To remove pulse artifacts, we first decompose data into temporally independent components and then select a compact cluster of components that possess sustained high mutual information with the electrocardiogram (ECG). After the removal of these components, the time courses of remaining components are filtered by SVD to remove the temporal patterns phase-locked to the cardiac timing markers derived from the ECG. The filtered component time courses are then inversely transformed into multi-channel EEG time series free of pulse artifacts. Evaluation based on a large set of simultaneous EEG-fMRI data obtained during a variety of behavioral tasks, sensory stimulations and resting conditions showed excellent data quality and robust performance attainable with the proposed methods. These algorithms have been implemented as a Matlab-based toolbox made freely available for public access and research use.
我们提出了一系列算法,用于从功能磁共振成像 (fMRI) 期间记录的脑电图 (EEG) 数据中依次去除与 MRI 梯度切换和心脏搏动相关的伪影。特别强调了使用统计指标和方法来提取和选择特征,这些特征可表征梯度和脉冲伪影。为了去除梯度伪影,我们使用基于奇异值分解 (SVD) 的通道滤波。为了去除脉冲伪影,我们首先将数据分解为时间独立的分量,然后选择一个与心电图 (ECG) 具有持续高互信息的紧凑分量簇。去除这些分量后,通过 SVD 对剩余分量的时间历程进行滤波,以去除从 ECG 得出的与心脏计时标记相位锁定的时间模式。然后将滤波后的分量时间历程反变换为多通道 EEG 时间序列,其中没有脉冲伪影。基于在各种行为任务、感觉刺激和休息状态下同时获得的大量 EEG-fMRI 数据进行的评估表明,所提出的方法可实现出色的数据质量和稳健的性能。这些算法已实现为一个基于 Matlab 的工具箱,可免费供公众访问和研究使用。