Suppr超能文献

发展一个全面的肩部和肘部肌肉骨骼模型。

Development of a comprehensive musculoskeletal model of the shoulder and elbow.

机构信息

Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.

出版信息

Med Biol Eng Comput. 2011 Dec;49(12):1425-35. doi: 10.1007/s11517-011-0839-7. Epub 2011 Oct 29.

Abstract

The Delft Shoulder and Elbow Model (DSEM), a musculoskeletal model of the shoulder and elbow has been extensively developed since its introduction in 1994. Extensions cover both model structures and anatomical data focusing on the addition of an elbow part and muscle architecture parameters. The model was also extended with a new inverse-dynamics optimization cost function and combined inverse-forward-dynamics models. This study is an update on the developments of the model over the last decade including a qualitative validation of the different simulation architectures available in the DSEM. To validate the model, a dynamic forward flexion motion was performed by one subject, of which the motion data and surface EMG-signals of 12 superficial muscles were measured. Patterns of the model-predicted relative muscle forces were compared with their normalized EMG-signals. Results showed relatively good agreement between forces and EMG (mean correlation coefficient of 0.66). However, for some cases, no force was predicted while EMG activity had been measured (false-negatives). The DSEM has been used and has the potential to be used in a variety of clinical and biomechanical applications.

摘要

德尔夫特肩部和肘部模型(DSEM)是 1994 年引入的肩部和肘部肌肉骨骼模型,自推出以来得到了广泛的发展。扩展涵盖了模型结构和解剖学数据,重点是增加肘部部分和肌肉结构参数。该模型还扩展了新的逆动力学优化成本函数和组合逆-前向动力学模型。本研究是对模型在过去十年中的发展进行的更新,包括对 DSEM 中可用的不同仿真架构进行定性验证。为了验证模型,一个受试者进行了动态前屈运动,运动数据和 12 个浅层肌肉的表面肌电图信号被测量。模型预测的相对肌肉力的模式与它们的归一化肌电图信号进行了比较。结果表明,力与肌电图之间的一致性相对较好(平均相关系数为 0.66)。然而,在某些情况下,虽然测量到了肌电图活动,但没有预测到力(假阴性)。DSEM 已被使用,并有可能在各种临床和生物力学应用中使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/3223593/f1d2656ccebb/11517_2011_839_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验