Suppr超能文献

Purification of delta-aminolevulinate dehydratase from genetically engineered yeast.

作者信息

Borralho L M, Ortiz C H, Panek A D, Mattoon J R

机构信息

Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Brazil.

出版信息

Yeast. 1990 Jul-Aug;6(4):319-30. doi: 10.1002/yea.320060405.

Abstract

Saccharomyces cerevisiae transformed with a multicopy plasmid carrying the yeast structural gene HEM2, which codes for delta-aminolevulinate dehydratase, was enriched 20-fold in the enzyme. Beginning with cell-free extracts of transformed cells, the dehydratase was purified 193-fold to near-homogeneity. This represents a 3900-fold purification relative to the enzyme activity in normal, untransformed yeast cells. The specific activity of the purified enzyme was 16.2 mumol h-1 per mg protein at pH 9.4 and 37.5 degrees C. In most respects the yeast enzyme resembles mammalian enzymes. It is a homo-octamer with an apparent Mr of 275,000, as determined by centrifugation in glycerol density gradients, and under denaturing conditions behaved as a single subunit of Mr congruent to 37,000. The enzyme requires reduced thiol compounds to maintain full activity, and maximum activity was obtained in the presence of 1.0 mM-Zn2+. It is sensitive to inhibition by the heavy metal ions Pb2+ and Cu2+. The enzyme exhibits Michaelis-Menten kinetics and has an apparent Km of 0.359 mM. Like dehydratases from animal tissues, the yeast enzyme is rather thermostable. During the purification process an enhancement in total delta-aminolevulinate dehydratase activity suggested the possibility that removal of an inhibitor of the enzyme could be occurring.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验