Suppr超能文献

在沉积微生物燃料电池中石墨阴极上氧气还原动力学。

Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells.

机构信息

The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 118 Dana Hall Spokane St. P.O. Box 642710, Pullman, WA 99164-2710, USA.

出版信息

Phys Chem Chem Phys. 2011 Dec 28;13(48):21573-84. doi: 10.1039/c1cp23200b. Epub 2011 Nov 3.

Abstract

Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to estimate the power production of SMFCs. Our goals were to (1) experimentally quantify the dependence of oxygen reduction kinetics on temperature, electrode potential, and dissolved oxygen concentration for the graphite cathodes of SMFCs and (2) develop a mechanistic model. To accomplish this, we monitored current on polarized cathodes in river and ocean SMFCs. We found that (1) after oxygen reduction is initiated, the current density is linearly dependent on polarization potential for both SMFC types; (2) current density magnitude increases linearly with temperature in river SMFCs but remains constant with temperature in ocean SMFCs; (3) the standard heterogeneous rate constant controls the current density temperature dependence; (4) river and ocean SMFC graphite cathodes have large potential losses, estimated by the model to be 470 mV and 614 mV, respectively; and (5) the electrochemical potential available at the cathode is the primary factor controlling reduction kinetic rates. The mechanistic model based on thermodynamic and electrochemical principles successfully fit and predicted the data. The data, experimental system, and model can be used in future studies to guide SMFC design and deployment, assess SMFC current production, test cathode material performance, and predict cathode contamination.

摘要

沉积物微生物燃料电池 (SMFC) 已被用作淡水和海水中传感器的可再生电源。阳极处的有机化合物驱动阳极反应,而氧气则驱动阴极反应。为了预测阴极电流和电位损耗,最终估计 SMFC 的发电能力,需要了解氧气还原动力学以及决定石墨阴极性能的因素。我们的目标是:(1) 实验量化 SMFC 石墨阴极的氧气还原动力学对温度、电极电位和溶解氧浓度的依赖关系;(2) 开发一个机械模型。为了实现这一目标,我们监测了河流和海洋 SMFC 中极化阴极的电流。我们发现:(1) 在氧气还原开始后,两种 SMFC 类型的电流密度与极化电位呈线性相关;(2) 河流 SMFC 中的电流密度随温度呈线性增加,但海洋 SMFC 中的电流密度随温度保持不变;(3) 标准非均相速率常数控制电流密度的温度依赖性;(4) 河流和海洋 SMFC 石墨阴极的电位损耗较大,模型估计分别为 470 mV 和 614 mV;(5) 阴极的电化学势是控制还原动力学速率的主要因素。基于热力学和电化学原理的机械模型成功拟合和预测了数据。这些数据、实验系统和模型可用于未来的研究,以指导 SMFC 的设计和部署、评估 SMFC 的电流产生、测试阴极材料的性能以及预测阴极污染。

相似文献

6
Cathodic and anodic biofilms in Single Chamber Microbial Fuel Cells.单室微生物燃料电池中的阴极和阳极生物膜。
Bioelectrochemistry. 2013 Aug;92:6-13. doi: 10.1016/j.bioelechem.2013.01.005. Epub 2013 Feb 8.

引用本文的文献

2
Electrochemically Active Biofilms as an Indicator of Soil Health.电化学活性生物膜作为土壤健康状况的指标
J Electrochem Soc. 2021 Aug;168(8). doi: 10.1149/1945-7111/ac1e56. Epub 2021 Aug 26.
4
Kinetics and scale up of oxygen reducing cathodic biofilms.氧还原阴极生物膜的动力学及放大研究
Biofilm. 2021 Jun 18;3:100053. doi: 10.1016/j.bioflm.2021.100053. eCollection 2021 Dec.

本文引用的文献

9
Anodophilic biofilm catalyzes cathodic oxygen reduction.嗜阳极生物膜催化阴极氧气还原。
Environ Sci Technol. 2010 Jan 1;44(1):518-25. doi: 10.1021/es9023833.
10
Electron transfer process from marine biofilms to graphite electrodes in seawater.海水中海洋生物膜到石墨电极的电子传递过程。
Bioelectrochemistry. 2010 Apr;78(1):92-5. doi: 10.1016/j.bioelechem.2009.09.010. Epub 2009 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验