State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China.
Mol Cancer Ther. 2012 Jan;11(1):45-56. doi: 10.1158/1535-7163.MCT-11-0578. Epub 2011 Nov 4.
Inhibition of mTOR signaling by rapamycin has been shown to activate extracellular signal-regulated kinase 1 or 2 (ERK1/2) and Akt in various types of cancer cells, which contributes to rapamycin resistance. However, the downstream effect of rapamycin-activated ERKs and Akt on survival or death substrate(s) remains unclear. We discovered that treatment of human lung cancer cells with rapamycin results in enhanced phosphorylation of Bad at serine (S) 112 and S136 but not S155 in association with activation of ERK1/2 and Akt. A higher level of Bad phosphorylation was observed in rapamycin-resistant cells compared with parental rapamycin-sensitive cells. Thus, Bad phosphorylation may contribute to rapamycin resistance. Mechanistically, rapamycin promotes Bad accumulation in the cytosol, enhances Bad/14-3-3 interaction, and reduces Bad/Bcl-XL binding. Rapamycin-induced Bad phosphorylation promotes its ubiquitination and degradation, with a significant reduction of its half-life (i.e., from 53.3-37.5 hours). Inhibition of MEK/ERK by PD98059 or depletion of Akt by RNA interference blocks rapamycin-induced Bad phosphorylation at S112 or S136, respectively. Simultaneous blockage of S112 and S136 phosphorylation of Bad by PD98059 and silencing of Akt significantly enhances rapamycin-induced growth inhibition in vitro and synergistically increases the antitumor efficacy of rapamycin in lung cancer xenografts. Intriguingly, either suppression of Bad phosphorylation at S112 and S136 sites or expression of the nonphosphorylatable Bad mutant (S112A/S136A) can reverse rapamycin resistance. These findings uncover a novel mechanism of rapamycin resistance, which may promote the development of new strategies for overcoming rapamycin resistance by manipulating Bad phosphorylation at S112 and S136 in human lung cancer.
雷帕霉素抑制 mTOR 信号通路已被证实可激活多种类型癌细胞中的细胞外信号调节激酶 1 或 2(ERK1/2)和 Akt,这有助于雷帕霉素耐药。然而,雷帕霉素激活的 ERK 和 Akt 对存活或死亡底物的下游影响尚不清楚。我们发现,雷帕霉素处理人肺癌细胞会导致 Bad 在丝氨酸(S)112 和 S136 上的磷酸化增强,但 S155 没有变化,同时 ERK1/2 和 Akt 被激活。与亲本雷帕霉素敏感细胞相比,雷帕霉素耐药细胞中 Bad 的磷酸化水平更高。因此,Bad 的磷酸化可能有助于雷帕霉素耐药。从机制上讲,雷帕霉素促进 Bad 在细胞质中的积累,增强 Bad/14-3-3 相互作用,并减少 Bad/Bcl-XL 结合。雷帕霉素诱导的 Bad 磷酸化促进其泛素化和降解,半衰期明显缩短(即从 53.3-37.5 小时)。MEK/ERK 的抑制剂 PD98059 或 Akt 的 RNA 干扰分别阻断雷帕霉素诱导的 Bad 在 S112 或 S136 的磷酸化。PD98059 阻断 Bad 的 S112 和 S136 磷酸化和沉默 Akt 可显著增强雷帕霉素在体外诱导的生长抑制作用,并协同增强雷帕霉素在肺癌异种移植瘤中的抗肿瘤疗效。有趣的是,抑制 Bad 在 S112 和 S136 位点的磷酸化或表达非磷酸化的 Bad 突变体(S112A/S136A)均可逆转雷帕霉素耐药。这些发现揭示了雷帕霉素耐药的一种新机制,通过操纵 Bad 在 S112 和 S136 的磷酸化,可能为克服雷帕霉素耐药提供新的策略。