Chan S S, Breslauer K J, Hogan M E, Kessler D J, Austin R H, Ojemann J, Passner J M, Wiles N C
Department of Chemistry, Rutgers, State University of New Jersey, New Brunswick 08903.
Biochemistry. 1990 Jul 3;29(26):6161-71. doi: 10.1021/bi00478a008.
We have employed a variety of physical methods to study the equilibrium melting and temperature-dependent conformational dynamics of dA.dT tracts in fractionated synthetic DNA polymers and in well-defined fragments of kinetoplast DNA (kDNA). Using circular dichroism (CD), we have detected a temperature-dependent, "premelting" event in poly(dA).poly(dT) which exhibits a midpoint near 37 degrees C. Significantly, we also detect this CD "premelting" behavior in a fragment of kDNA. By contrast, we do not observe this "premelting" behavior in the temperature-dependent CD spectra of poly[d(AT)].poly[d(AT)], poly(dG).poly(dC), poly[d(GC)].poly[d(GC)], or calf thymus DNA. Thus, poly(dA).poly(dT) and kDNA exhibit a common CD-detected "premelting" event which is absent in the other duplex systems studied in this work. Furthermore, we find that the anomalous electrophoretic retardation of the kDNA fragments we have investigated disappears at temperatures above approximately 37 degrees C. We also observe that the rotational dynamics of poly(dA).poly(dT) and kDNA as assessed by singlet depletion anisotropy decay (SDAD) and electric birefringence decay (EBD) also display a discontinuity near 37 degrees C, which is not observed for the other duplex systems studied. Thus, in the aggregate, our static and dynamic measurements suggest that the homo dA.dT sequence element [common to both poly(dA).poly(dT) and kDNA] is capable of a temperature-dependent equilibrium between at least two helical states in a temperature range well below that required to induce global melting of the host duplex. We suggest that this "preglobal" melting event may correspond to the thermally induced "disruption" of "bent" DNA.
我们采用了多种物理方法来研究分级分离的合成DNA聚合物以及动质体DNA(kDNA)的明确片段中dA.dT序列的平衡熔解和温度依赖性构象动力学。通过圆二色性(CD),我们在聚(dA)·聚(dT)中检测到了一个温度依赖性的“预熔解”事件,其熔解中点接近37℃。值得注意的是,我们在kDNA的一个片段中也检测到了这种CD“预熔解”行为。相比之下,在聚[d(AT)]·聚[d(AT)]、聚(dG)·聚(dC)、聚[d(GC)]·聚[d(GC)]或小牛胸腺DNA的温度依赖性CD光谱中,我们并未观察到这种“预熔解”行为。因此,聚(dA)·聚(dT)和kDNA表现出一种共同的CD检测到的“预熔解”事件,而在本研究的其他双链体系统中则不存在。此外,我们发现,我们所研究的kDNA片段的异常电泳延迟在高于约37℃的温度下消失。我们还观察到,通过单重态耗尽各向异性衰减(SDAD)和电双折射衰减(EBD)评估的聚(dA)·聚(dT)和kDNA的旋转动力学在37℃附近也表现出不连续性,而在研究的其他双链体系统中未观察到这种情况。因此,总体而言,我们的静态和动态测量表明,同型dA.dT序列元件(聚(dA)·聚(dT)和kDNA共有的)在远低于诱导宿主双链体整体熔解所需温度的范围内,能够在至少两种螺旋状态之间形成温度依赖性平衡。我们认为,这种“全局前”熔解事件可能对应于热诱导的“弯曲”DNA的“破坏”。