Suppr超能文献

人群结构在奈瑟菌属中,以及模糊种的生物学意义。

Population structure in the Neisseria, and the biological significance of fuzzy species.

机构信息

Department of Mathematics and Statistics, University of Helsinki, PO Box 68, 00014 Helsinki, Finland.

出版信息

J R Soc Interface. 2012 Jun 7;9(71):1208-15. doi: 10.1098/rsif.2011.0601. Epub 2011 Nov 9.

Abstract

Phenotypic and genetic variation in bacteria can take bewilderingly complex forms even within a single genus. One of the most intriguing examples of this is the genus Neisseria, which comprises both pathogens and commensals colonizing a variety of body sites and host species, and causing a range of disease. Complex relatedness among both named species and previously identified lineages of Neisseria makes it challenging to study their evolution. Using the largest publicly available collection of bacterial sequence data in combination with a population genetic analysis and experiment, we probe the contribution of inter-species recombination to neisserial population structure, and specifically whether it is more common in some strains than others. We identify hybrid groups of strains containing sequences typical of more than one species. These groups of strains, typical of a fuzzy species, appear to have experienced elevated rates of inter-species recombination estimated by population genetic analysis and further supported by transformation experiments. In particular, strains of the pathogen Neisseria meningitidis in the fuzzy species boundary appear to follow a different lifestyle, which may have considerable biological implications concerning distribution of novel resistance elements and meningococcal vaccine development. Despite the strong evidence for negligible geographical barriers to gene flow within the population, exchange of genetic material still shows directionality among named species in a non-uniform manner.

摘要

即使在单一属内,细菌的表型和遗传变异也可能呈现出令人眼花缭乱的复杂形式。其中最有趣的例子之一是奈瑟菌属,它包括定植于多种宿主部位和宿主物种的病原体和共生菌,并引起多种疾病。属内已命名的物种和以前鉴定的奈瑟菌谱系之间复杂的亲缘关系,使得研究它们的进化变得具有挑战性。本研究利用最大的公开细菌序列数据集,结合群体遗传学分析和实验,探究了种间重组对奈瑟菌种群结构的贡献,特别是在某些菌株中是否比其他菌株更为普遍。我们鉴定了包含一种以上物种典型序列的混合菌株群。这些菌株群表现出较高的种间重组率,这一结果通过群体遗传学分析得到了估计,并通过转化实验得到了进一步支持。特别是在模糊物种边界的脑膜炎奈瑟菌菌株中,似乎遵循着不同的生活方式,这可能对新型耐药元件的分布和脑膜炎球菌疫苗的开发具有重要的生物学意义。尽管有强有力的证据表明该种群内基因流的地理障碍可以忽略不计,但遗传物质的交换在属内仍以非均匀的方式表现出种间的方向性。

相似文献

1
Population structure in the Neisseria, and the biological significance of fuzzy species.
J R Soc Interface. 2012 Jun 7;9(71):1208-15. doi: 10.1098/rsif.2011.0601. Epub 2011 Nov 9.
2
A genome-wide identification of genes undergoing recombination and positive selection in Neisseria.
Biomed Res Int. 2014;2014:815672. doi: 10.1155/2014/815672. Epub 2014 Aug 10.
3
Conservation of meningococcal antigens in the genus Neisseria.
mBio. 2013 Jun 11;4(3):e00163-13. doi: 10.1128/mBio.00163-13.
7
Fuzzy species among recombinogenic bacteria.
BMC Biol. 2005 Mar 7;3:6. doi: 10.1186/1741-7007-3-6.
8
The impact of the neisserial DNA uptake sequences on genome evolution and stability.
Genome Biol. 2008;9(3):R60. doi: 10.1186/gb-2008-9-3-r60. Epub 2008 Mar 26.
9
Genome sequencing reveals widespread virulence gene exchange among human Neisseria species.
PLoS One. 2010 Jul 28;5(7):e11835. doi: 10.1371/journal.pone.0011835.
10
Genomic characterization of novel Neisseria species.
Sci Rep. 2019 Sep 24;9(1):13742. doi: 10.1038/s41598-019-50203-2.

引用本文的文献

2
Canary in the Coal Mine: How Resistance Surveillance in Commensals Could Help Curb the Spread of AMR in Pathogenic .
mBio. 2022 Oct 26;13(5):e0199122. doi: 10.1128/mbio.01991-22. Epub 2022 Sep 26.
3
Prediction of Prophages and Their Host Ranges in Pathogenic and Commensal Species.
mSystems. 2022 Jun 28;7(3):e0008322. doi: 10.1128/msystems.00083-22. Epub 2022 Apr 14.
4
Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications.
PLoS One. 2022 Jan 13;17(1):e0262370. doi: 10.1371/journal.pone.0262370. eCollection 2022.
8
Epidemiological Trends of Antibiotic Resistant Gonorrhoea in the United Kingdom.
Antibiotics (Basel). 2018 Jul 13;7(3):60. doi: 10.3390/antibiotics7030060.
9
Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones?
Front Microbiol. 2016 May 26;7:788. doi: 10.3389/fmicb.2016.00788. eCollection 2016.

本文引用的文献

1
Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination.
Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4494-9. doi: 10.1073/pnas.1019751108. Epub 2011 Feb 28.
2
BIGSdb: Scalable analysis of bacterial genome variation at the population level.
BMC Bioinformatics. 2010 Dec 10;11:595. doi: 10.1186/1471-2105-11-595.
3
Identifying currents in the gene pool for bacterial populations using an integrative approach.
PLoS Comput Biol. 2009 Aug;5(8):e1000455. doi: 10.1371/journal.pcbi.1000455. Epub 2009 Aug 7.
4
Hyper-recombination, diversity, and antibiotic resistance in pneumococcus.
Science. 2009 Jun 12;324(5933):1454-7. doi: 10.1126/science.1171908.
5
On the origin of prokaryotic species.
Genome Res. 2009 May;19(5):744-56. doi: 10.1101/gr.086645.108.
6
Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations.
BMC Bioinformatics. 2008 Dec 16;9:539. doi: 10.1186/1471-2105-9-539.
7
Population genomics: diversity and virulence in the Neisseria.
Curr Opin Microbiol. 2008 Oct;11(5):467-71. doi: 10.1016/j.mib.2008.09.002. Epub 2008 Oct 14.
9
Recombination and the nature of bacterial speciation.
Science. 2007 Jan 26;315(5811):476-80. doi: 10.1126/science.1127573.
10
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.
Bioinformatics. 2006 Nov 1;22(21):2688-90. doi: 10.1093/bioinformatics/btl446. Epub 2006 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验