The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom.
PLoS One. 2011;6(11):e26813. doi: 10.1371/journal.pone.0026813. Epub 2011 Nov 2.
Transmissible spongiform encephalopathies are characterised by widespread deposition of fibrillar and/or plaque-like forms of the prion protein. These aggregated forms are produced by misfolding of the normal prion protein, PrP(C), to the disease-associated form, PrP(Sc), through mechanisms that remain elusive but which require either direct or indirect interaction between PrP(C) and PrP(Sc) isoforms. A wealth of evidence implicates other non-PrP molecules as active participants in the misfolding process, to catalyse and direct the conformational conversion of PrP(C) or to provide a scaffold ensuring correct alignment of PrP(C) and PrP(Sc) during conversion. Such molecules may be specific to different scrapie strains to facilitate differential prion protein misfolding. Since molecular cofactors may become integrated into the growing protein fibril during prion conversion, we have investigated the proteins contained in prion disease-specific deposits by shotgun proteomics of scrapie-associated fibrils (SAF) from mice infected with 3 different strains of mouse-passaged scrapie. Concomitant use of negative control preparations allowed us to identify and discount proteins that are enriched non-specifically by the SAF isolation protocol. We found several proteins that co-purified specifically with SAF from infected brains but none of these were reproducibly and demonstrably specific for particular scrapie strains. The α-chain of Na(+)/K(+)-ATPase was common to SAF from all 3 strains and we tested the ability of this protein to modulate in vitro misfolding of recombinant PrP. Na(+)/K(+)-ATPase enhanced the efficiency of disease-specific conversion of recombinant PrP suggesting that it may act as a molecular cofactor. Consistent with previous results, the same protein inhibited fibrillisation kinetics of recombinant PrP. Since functional interactions between PrP(C) and Na(+)/K(+)-ATPase have previously been reported in astrocytes, our data highlight this molecule as a key link between PrP function, dysfunction and misfolding.
传染性海绵状脑病的特征是广泛沉积纤维状和/或斑块状形式的朊病毒蛋白。这些聚集形式是由正常朊病毒蛋白 PrP(C) 通过机制错误折叠为疾病相关形式 PrP(Sc) 产生的,这些机制仍然难以捉摸,但需要 PrP(C) 和 PrP(Sc) 异构体之间的直接或间接相互作用。大量证据表明,其他非 PrP 分子作为积极参与者参与错误折叠过程,以催化和指导 PrP(C) 的构象转换,或提供一个支架,确保 PrP(C) 和 PrP(Sc) 在转换过程中的正确对齐。这些分子可能特定于不同的瘙痒病株,以促进不同的朊病毒蛋白错误折叠。由于分子辅因子可能在朊病毒转化过程中整合到生长中的蛋白质纤维中,我们通过对来自感染 3 种不同鼠传瘙痒病株的小鼠的瘙痒病相关纤维 (SAF) 的鸟枪法蛋白质组学研究了包含在朊病毒疾病特异性沉积物中的蛋白质。同时使用阴性对照制剂,我们能够识别和排除通过 SAF 分离方案非特异性富集的蛋白质。我们从感染的大脑中发现了几种与 SAF 特异性共纯化的蛋白质,但没有一种蛋白质对特定的瘙痒病株具有可重复和可证明的特异性。Na(+)/K(+) -ATPase 的α链存在于所有 3 种菌株的 SAF 中,我们测试了该蛋白在体外调节重组 PrP 错误折叠的能力。Na(+)/K(+) -ATPase 增强了重组 PrP 的疾病特异性转换效率,表明它可能作为分子辅因子发挥作用。与先前的结果一致,相同的蛋白质抑制了重组 PrP 的纤维化动力学。由于先前已经报道了 PrP(C) 和 Na(+)/K(+) -ATPase 之间的功能相互作用,我们的数据突出了该分子作为 PrP 功能、功能障碍和错误折叠之间关键联系的作用。