Suppr超能文献

没有证据表明,长期氮添加会增加成熟糖枫林的光合作用。

No evidence that chronic nitrogen additions increase photosynthesis in mature sugar maple forests.

机构信息

College of Natural Resources, University of Idaho, Moscow, Idaho 83844, USA.

出版信息

Ecol Appl. 2011 Oct;21(7):2413-24. doi: 10.1890/10-2076.1.

Abstract

Atmospheric nitrogen (N) deposition can increase forest growth. Because N deposition commonly increases foliar N concentrations, it is thought that this increase in forest growth is a consequence of enhanced leaf-level photosynthesis. However, tests of this mechanism have been infrequent, and increases in photosynthesis have not been consistently observed in mature forests subject to chronic N deposition. In four mature northern hardwood forests in the north-central United States, chronic N additions (30 kg N ha(-1) yr(-1) as NaNO3 for 14 years) have increased aboveground growth but have not affected canopy leaf biomass or leaf area index. In order to understand the mechanism behind the increases in growth, we hypothesized that the NO3(-) additions increased foliar N concentrations and leaf-level photosynthesis in the dominant species in these forests (sugar maple, Acer saccharum). The NO3(-) additions significantly increased foliar N. However, there was no significant difference between the ambient and +NO3(-) treatments in two seasons (2006-2007) of instantaneous measurements of photosynthesis from either canopy towers or excised branches. In measurements on excised branches, photosynthetic nitrogen use efficiency (micromol CO2 s(-1) g(-1) N) was significantly decreased (-13%) by NO3(-) additions. Furthermore, we found no consistent NO3(-) effect across all sites in either current foliage or leaf litter collected annually throughout the study (1993-2007) and analyzed for delta 13C and delta 18O, isotopes that can be used together to integrate changes in photosynthesis over time. We observed a small but significant NO3(-) effect on the average area and mass of individual leaves from the excised branches, but these differences varied by site and were countered by changes in leaf number. These photosynthesis and leaf area data together suggest that NO3(-) additions have not stimulated photosynthesis. There is no evidence that nutrient deficiencies have developed at these sites, so unlike other studies of photosynthesis in N-saturated forests, we cannot attribute the lack of a stimulation of photosynthesis to nutrient limitations. Rather than increases in C assimilation, the observed increases in aboveground growth at our study sites are more likely due to shifts in C allocation.

摘要

大气氮(N)沉积可以促进森林生长。由于 N 沉积通常会增加叶片 N 浓度,因此人们认为这种森林生长的增加是叶片水平光合作用增强的结果。然而,对这一机制的测试并不频繁,而且在受慢性 N 沉积影响的成熟森林中,光合作用的增加并未得到一致观察。在美国中北部的四个成熟硬木林中,慢性 N 添加(14 年内每年 30 公斤 N ha(-1)作为 NaNO3)增加了地上生长,但未影响树冠叶生物量或叶面积指数。为了了解生长增加背后的机制,我们假设 NO3(-)添加增加了这些森林中主要物种(糖枫,Acer saccharum)的叶片 N 浓度和叶片水平光合作用。NO3(-)添加显著增加了叶片 N。然而,在两个季节(2006-2007 年)中,来自树冠塔或切下树枝的光合作用瞬时测量中,环境和+NO3(-)处理之间没有显著差异。在切下的树枝上的测量中,光合作用的氮利用效率(µmol CO2 s(-1)g(-1)N)由于 NO3(-)添加而显著降低(-13%)。此外,我们在整个研究期间(1993-2007 年)每年收集的当前枝叶或叶凋落物中都没有发现所有站点的一致的 NO3(-)效应,并用δ 13C 和 δ 18O 进行分析,这些同位素可以一起用于随时间整合光合作用的变化。我们观察到来自切下树枝的单个叶片的平均面积和质量的微小但显著的 NO3(-)效应,但这些差异因地点而异,并被叶片数量的变化所抵消。这些光合作用和叶面积数据表明,NO3(-)添加并未刺激光合作用。这些地点没有出现养分缺乏的证据,因此与其他 N 饱和森林中光合作用的研究不同,我们不能将光合作用刺激的缺乏归因于养分限制。与 C 同化的增加相反,我们研究地点地上生长的观察到的增加更可能是由于 C 分配的变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验