ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072 Brisbane, Australia.
J Am Chem Soc. 2011 Dec 21;133(50):20116-9. doi: 10.1021/ja209206c. Epub 2011 Nov 29.
Based on theoretical prediction, a g-C(3)N(4)@carbon metal-free oxygen reduction reaction (ORR) electrocatalyst was designed and synthesized by uniform incorporation of g-C(3)N(4) into a mesoporous carbon to enhance the electron transfer efficiency of g-C(3)N(4). The resulting g-C(3)N(4)@carbon composite exhibited competitive catalytic activity (11.3 mA cm(-2) kinetic-limiting current density at -0.6 V) and superior methanol tolerance compared to a commercial Pt/C catalyst. Furthermore, it demonstrated significantly higher catalytic efficiency (nearly 100% of four-electron ORR process selectivity) than a Pt/C catalyst. The proposed synthesis route is facile and low-cost, providing a feasible method for the development of highly efficient electrocatalysts.
基于理论预测,通过将 g-C(3)N(4)均匀地嵌入到介孔碳中来设计和合成 g-C(3)N(4)@无碳金属氧还原反应 (ORR) 电催化剂,以提高 g-C(3)N(4)的电子转移效率。所得的 g-C(3)N(4)@碳复合材料表现出竞争性的催化活性(在-0.6 V 时的动力学极限电流密度为 11.3 mA cm(-2))和优于商业 Pt/C 催化剂的甲醇耐受性。此外,它表现出比 Pt/C 催化剂更高的催化效率(近 100%的四电子 ORR 过程选择性)。所提出的合成路线简单且成本低,为开发高效电催化剂提供了一种可行的方法。