Suppr超能文献

基于快速交替最小化算法的稳健多通道盲反卷积。

Robust multichannel blind deconvolution via fast alternating minimization.

机构信息

Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague, Czech Republic.

出版信息

IEEE Trans Image Process. 2012 Apr;21(4):1687-700. doi: 10.1109/TIP.2011.2175740. Epub 2011 Nov 9.

Abstract

Blind deconvolution, which comprises simultaneous blur and image estimations, is a strongly ill-posed problem. It is by now well known that if multiple images of the same scene are acquired, this multichannel (MC) blind deconvolution problem is better posed and allows blur estimation directly from the degraded images. We improve the MC idea by adding robustness to noise and stability in the case of large blurs or if the blur size is vastly overestimated. We formulate blind deconvolution as an l(1) -regularized optimization problem and seek a solution by alternately optimizing with respect to the image and with respect to blurs. Each optimization step is converted to a constrained problem by variable splitting and then is addressed with an augmented Lagrangian method, which permits simple and fast implementation in the Fourier domain. The rapid convergence of the proposed method is illustrated on synthetically blurred data. Applicability is also demonstrated on the deconvolution of real photos taken by a digital camera.

摘要

盲反卷积同时包含模糊和图像估计,是一个强烈不适定的问题。现在已经众所周知,如果获取同一场景的多个图像,则该多通道(MC)盲反卷积问题更好地解决,并且可以直接从退化图像中估计模糊。我们通过添加对噪声的鲁棒性和在大模糊或模糊尺寸严重高估的情况下的稳定性来改进 MC 思想。我们将盲反卷积表述为 l(1) 正则化优化问题,并通过依次针对图像和模糊进行优化来寻求解决方案。通过变量分裂将每个优化步骤转换为约束问题,然后使用增广拉格朗日方法解决,该方法允许在傅立叶域中进行简单快速的实现。所提出的方法在合成模糊数据上的快速收敛性得到了说明。该方法的适用性也在数字相机拍摄的真实照片的反卷积中得到了证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验