Suppr超能文献

基于互信息的多光谱成像(MSI)序列眼部图像去模糊。

Deblurring sequential ocular images from multi-spectral imaging (MSI) via mutual information.

机构信息

School of Information Science and Engineering, Shandong Normal University, Jinan, 250014, China.

Department of Electrical Engineering Information Technology at Shandong University of Science and Technology, Jinan, 250031, China.

出版信息

Med Biol Eng Comput. 2018 Jun;56(6):1107-1113. doi: 10.1007/s11517-017-1743-6. Epub 2017 Nov 25.

Abstract

Multi-spectral imaging (MSI) produces a sequence of spectral images to capture the inner structure of different species, which was recently introduced into ocular disease diagnosis. However, the quality of MSI images can be significantly degraded by motion blur caused by the inevitable saccades and exposure time required for maintaining a sufficiently high signal-to-noise ratio. This degradation may confuse an ophthalmologist, reduce the examination quality, or defeat various image analysis algorithms. We propose an early work specially on deblurring sequential MSI images, which is distinguished from many of the current image deblurring techniques by resolving the blur kernel simultaneously for all the images in an MSI sequence. It is accomplished by incorporating several a priori constraints including the sharpness of the latent clear image, the spatial and temporal smoothness of the blur kernel and the similarity between temporally-neighboring images in MSI sequence. Specifically, we model the similarity between MSI images with mutual information considering the different wavelengths used for capturing different images in MSI sequence. The optimization of the proposed approach is based on a multi-scale framework and stepwise optimization strategy. Experimental results from 22 MSI sequences validate that our approach outperforms several state-of-the-art techniques in natural image deblurring.

摘要

多光谱成像(MSI)产生一系列光谱图像以捕获不同物种的内部结构,该技术最近被引入眼部疾病诊断中。然而,由于眼球的不自主跳动以及为了保持足够高的信噪比而需要的曝光时间,MSI 图像的质量可能会显著下降。这种降级可能会使眼科医生感到困惑,降低检查质量,或者使各种图像分析算法失效。我们提出了一项专门针对 MSI 序列去模糊的早期工作,与许多当前的图像去模糊技术不同,它可以同时为 MSI 序列中的所有图像解决模糊核。这是通过结合包括潜在清晰图像的锐度、模糊核的空间和时间平滑度以及 MSI 序列中时间相邻图像之间的相似性在内的几个先验约束来实现的。具体来说,我们使用互信息来模拟 MSI 图像之间的相似性,考虑到 MSI 序列中用于捕获不同图像的不同波长。所提出方法的优化基于多尺度框架和逐步优化策略。来自 22 个 MSI 序列的实验结果验证了我们的方法在自然图像去模糊方面优于几种最先进的技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验