Suppr超能文献

使用症状效度测验检测大学生的伪装注意缺陷多动障碍。

Using symptom validity tests to detect malingered ADHD in college students.

机构信息

Department of Psychology, University of Kentucky, Lexington, KY 40506, USA.

出版信息

Clin Neuropsychol. 2011 Nov;25(8):1415-28. doi: 10.1080/13854046.2011.630024. Epub 2011 Nov 15.

Abstract

Recently there has been growing concern that college students may feign symptoms of ADHD in order to obtain academic accommodations and stimulant medication. Unfortunately research has only begun to validate detection tools for malingered ADHD. The present study cross-validated the results of Sollman, Ranseen, and Berry (2010) on the efficacy of several symptom validity tests for detection of simulated ADHD among college students. Undergraduates with a history of diagnosed ADHD were randomly assigned either to respond honestly or exaggerate symptoms, and were compared to undergraduates with no history of ADHD or other psychiatric disorders who were also randomly assigned to respond honestly or feign symptoms of ADHD. Similar to Sollman et al. (2010) and other recent research on feigned ADHD, several symptom validity tests, including the Test of Memory Malingering (TOMM), Letter Memory Test (LMT), Digit Memory Test (DMT), Nonverbal Medical Symptom Validity Test (NV-MSVT), and the b Test were reasonably successful at discriminating feigned and genuine ADHD. When considered as a group, the criterion of failure of 2 or more of these SVTs had a sensitivity of. 475 and a specificity of 1.00.

摘要

最近越来越多的人担心大学生可能会伪装 ADHD 症状,以获得学业上的便利和兴奋剂药物。不幸的是,研究才刚刚开始验证用于检测伪装 ADHD 的工具。本研究交叉验证了 Sollman、Ranseen 和 Berry(2010 年)关于几种症状有效性测试在检测大学生中模拟 ADHD 的效果的研究结果。有 ADHD 诊断史的本科生被随机分配要么诚实地回答,要么夸大症状,并与没有 ADHD 或其他精神障碍史的本科生进行比较,这些本科生也被随机分配要么诚实地回答,要么假装患有 ADHD 症状。与 Sollman 等人(2010 年)和最近关于伪装 ADHD 的其他研究类似,几种症状有效性测试,包括记忆错觉测试(TOMM)、字母记忆测试(LMT)、数字记忆测试(DMT)、非言语医疗症状有效性测试(NV-MSVT)和 b 测试,在区分伪装和真实 ADHD 方面相当成功。当这些 SVTs 中有 2 个或更多被视为一个整体时,其失败的标准的灵敏度为 0.475,特异性为 1.00。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验