LUNAM Université, Ingénierie de la Vectorisation Particulaire, F-49933 Angers Cedex, France.
Eur J Pharm Sci. 2012 Jan 23;45(1-2):128-37. doi: 10.1016/j.ejps.2011.10.030. Epub 2011 Nov 9.
A promising strategy to repair injured organs is possible by delivering a growth factor via poly-(d,l lactide-co-glycolide) (PLGA) microspheres; the latter are coated with adhesion molecules that serve as a support for cell delivery. At present, PLGA is not the optimal choice of polymer because of poor or incomplete protein release. The use of a more hydrophilic PLGA-PEG-PLGA (A-B-A) copolymer increases the degree of protein release. In this work, the impact of different combinations of (B) and (A) segments on the protein-release profile has been investigated. Continuous-release profiles, with no lag phases, were observed. The triblock ABA with a low molecular weight of PEG and a high molecular weight of PLGA showed an interesting release pattern with a small burst (<10% in 48 h) followed by sustained, protein release over 36 days. Incomplete protein release was found to be due to various causes: protein adsorption, protein aggregation and protein denaturation under acidic conditions. Interestingly, cell viability and cell adhesion on microspheres coated with fibronectin highlight the interest of these polymers for tissue engineering applications.
通过聚(丙交酯-乙交酯)(PLGA)微球递送生长因子是修复受损器官的一种很有前途的策略;后者涂有黏附分子,可作为细胞输送的支撑物。目前,由于蛋白质释放不完全或不理想,PLGA 并不是聚合物的最佳选择。使用更亲水的 PLGA-PEG-PLGA(A-B-A)共聚物可增加蛋白质释放的程度。在这项工作中,研究了不同(B)和(A)段组合对蛋白质释放曲线的影响。观察到没有滞后期的连续释放曲线。具有低分子量 PEG 和高分子量 PLGA 的三嵌段 ABA 呈现出有趣的释放模式,即小爆发(48 小时内<10%),随后持续释放蛋白质超过 36 天。不完全蛋白质释放是由于多种原因造成的:蛋白质吸附、酸性条件下的蛋白质聚集和蛋白质变性。有趣的是,涂有纤维连接蛋白的微球上的细胞活力和细胞黏附性突显了这些聚合物在组织工程应用中的重要性。