Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, USA.
J Chem Phys. 2011 Nov 14;135(18):184702. doi: 10.1063/1.3655817.
We introduce Monte Carlo simulation methods for determining the wetting properties of model systems at geometrically rough interfaces. The techniques described here enable one to calculate the macroscopic contact angle of a droplet that organizes in one of the three wetting states commonly observed for fluids at geometrically rough surfaces: the Cassie, Wenzel, and impregnation states. We adopt an interface potential approach in which the wetting properties of a system are related to the surface density dependence of the surface excess free energy of a thin liquid film in contact with the substrate. We first describe challenges and inefficiencies encountered when implementing a direct version of this approach to compute the properties of fluids at rough surfaces. Next, we detail a series of convenient thermodynamic paths that enable one to obtain free energy information at relevant surface densities over a wide range of temperatures and substrate strengths in an efficient manner. We then show how this information is assembled to construct complete wetting diagrams at a temperature of interest. The strategy pursued within this work is general and is expected to be applicable to a wide range of molecular systems. To demonstrate the utility of the approach, we present results for a Lennard-Jones fluid in contact with a substrate containing rectangular-shaped grooves characterized by feature sizes of order ten fluid diameters. For this particular fluid-substrate combination, we find that the macroscopic theories of Cassie and Wenzel provide a reasonable description of simulation data.
我们介绍了用于确定几何粗糙界面模型系统润湿性的蒙特卡罗模拟方法。这里描述的技术可以计算在几何粗糙表面上常见的三种润湿状态之一中组织的液滴的宏观接触角:Cassie、Wenzel 和浸渍状态。我们采用界面势能方法,其中系统的润湿性与与基底接触的薄液膜的表面过剩自由能的表面密度依赖性相关。我们首先描述了当实施这种方法的直接版本以计算粗糙表面上流体的性质时遇到的挑战和效率低下。接下来,我们详细介绍了一系列方便的热力学路径,这些路径可以有效地在宽温度和基底强度范围内在相关表面密度下获得自由能信息。然后,我们展示如何组装这些信息来构建在感兴趣温度下的完整润湿图。在这项工作中采用的策略是通用的,预计适用于广泛的分子系统。为了证明该方法的实用性,我们展示了与具有特征尺寸为十个流体直径量级的矩形槽的基底接触的 Lennard-Jones 流体的结果。对于这种特定的流体-基底组合,我们发现 Cassie 和 Wenzel 的宏观理论为模拟数据提供了合理的描述。