Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, USA.
Langmuir. 2010 Aug 17;26(16):13297-304. doi: 10.1021/la1016164.
We examine the extent to which nanoscale geometric substrate roughness influences the contact angle droplets establish on solid surfaces. Free-energy-based Monte Carlo simulation methods are used to compute contact angles and interfacial tensions of a model Lennard-Jones fluid on substrates with regular one-dimensional heterogeneities characterized by amplitudes and periodicities in the 2-25 nm range. We focus on a relatively strong surface that facilitates the formation of Wenzel droplets. Our results enable us to probe the validity of Wenzel's model at these length scales. We find that the aforementioned model predicts the evolution of the contact angle with near-quantitative accuracy over a wide range of amplitudes for substrates with periodicities larger than approximately 20 fluid diameters, or 10 nm for an argon-like system. However, below this length scale the Wenzel model provides progressively poorer estimates of the contact angle as the periodicity of the substrate features decreases. At these relatively small length scales, the Wenzel model overestimates the influence of roughness. To complete our analysis, we introduce a means to overcome sampling difficulties that arise at intermediate densities during grand canonical simulation. Specifically, we describe a two-step process that enables us to access the free energy of a system containing a thick liquid film in contact with the substrate. The process involves high-temperature grand canonical simulation followed by temperature-expanded ensemble simulation at relatively high surface density.
我们研究了纳米级几何基底粗糙度对固体表面上液滴接触角的影响程度。采用基于自由能的蒙特卡罗模拟方法,计算了模型 Lennard-Jones 流体在具有 2-25nm 范围内的振幅和周期性的规则一维非均匀性基底上的接触角和界面张力。我们专注于相对较强的表面,这有利于 Wenzel 液滴的形成。我们的结果使我们能够在这些长度尺度上探测 Wenzel 模型的有效性。我们发现,对于具有大于约 20 个流体直径的周期性的基底(对于氩气类似的系统为 10nm),上述模型可以在相当宽的振幅范围内以接近定量的精度预测接触角的演化。然而,在这个长度尺度以下,随着基底特征的周期性减小,Wenzel 模型对接触角的估计越来越不准确。在这些相对较小的长度尺度上,Wenzel 模型高估了粗糙度的影响。为了完成我们的分析,我们引入了一种克服在巨正则模拟中中间密度下出现的抽样困难的方法。具体来说,我们描述了一个两步过程,使我们能够访问与基底接触的厚液膜系统的自由能。该过程涉及高温巨正则模拟,然后在相对高的表面密度下进行温度扩展系综模拟。