Suppr超能文献

带电多孔球在微纳米通道中的电泳运动。

Electrophoretic motion of a charged porous sphere within micro- and nanochannels.

机构信息

Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.

出版信息

Phys Chem Chem Phys. 2012 Jan 14;14(2):657-67. doi: 10.1039/c1cp21938c. Epub 2011 Nov 16.

Abstract

Electrophoretic motion of a charged porous sphere within micro- and nanochannels is investigated theoretically. The Brinkman model and the full non-linear Poisson-Boltzmann equation are adopted to model the system, with the charged porous sphere resembling polyelectrolytes like proteins and DNA. General electrokinetic equations are employed and solved with a pseudo-spectral method. Key parameters of electrokinetic interest are examined for their respective effect as well as overall impact on the particle motion. We found, among other things, that the confinement effect of the channel can be so drastic that 75% reduction of particle mobility is observed in some situations for a poorly permeable particle. However, only 15% for the corresponding highly permeable particle due to the allowance of fluid penetration which alleviates the retarding shear stress significantly. In particular, an intriguing phenomenon is observed for the highly permeable particle: the narrower the channel is, the faster the particle moves! This was experimentally observed as well in the literature on DNA electrophoresis within nanostructures. The reason behind it is thoroughly explained here. Moreover, charged channels can exert electroosmosis flow so dominant that sometimes it may even reverse the direction of the particle motion. Comparison with experimental data available in the literature for some polyelectrolytes is excellent, indicating the reliability of this analysis. The results of this study provide fundamental knowledge necessary to interpret experimental data correctly in various microfluidic and nanofluidic operations involving bio-macromolecules, such as in biosensors and Lab-on-a-chip devices.

摘要

带电多孔球体在微纳米通道中的电泳运动进行了理论研究。采用 Brinkman 模型和完整的非线性泊松-玻尔兹曼方程来模拟系统,其中带电多孔球体类似于蛋白质和 DNA 等聚电解质。采用广义电泳方程,并采用伪谱法求解。考察了电动力学感兴趣的关键参数对粒子运动的各自影响以及总体影响。我们发现,通道的限制效应可能非常剧烈,在某些情况下,对于渗透性差的粒子,其迁移率会降低 75%。然而,对于相应的高渗透性粒子,由于允许流体渗透,迁移率仅降低 15%,因为这显著减轻了阻碍剪切应力。特别是,对于高渗透性粒子观察到一种有趣的现象:通道越窄,粒子移动得越快!这在文献中关于 DNA 在纳米结构内的电泳实验中也得到了观察。这里彻底解释了其背后的原因。此外,带电通道可以施加如此主导的电渗流,以至于有时甚至可能反转粒子运动的方向。与文献中某些聚电解质的实验数据的比较非常出色,表明了这种分析的可靠性。本研究的结果提供了正确解释涉及生物大分子的各种微流控和纳流控操作中实验数据所需的基础知识,例如生物传感器和芯片实验室设备。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验