Suppr超能文献

利用多脉冲耦合神经网络减少超声多普勒血流频谱图中的噪声和斑点

[Noise and speckle reduction in ultrasound Doppler blood flow spectrograms by using MP-PCNN].

作者信息

Li Haiyan, Ma Yue, Zhang Yufeng, Shu Xinling

机构信息

School of Information Science and Engineering, Yunnan University, Kunming 650091, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2011 Oct;28(5):886-90.

Abstract

To reduce background noise and Dopplar speckle in the spectrogram of ultrasound Doppler blood flow signals, a novel method, called Matching Pursuit with threshold decaying pulse coupled neural network (MP-PCNN), has been proposed. The proposed method used an iterative algorithm, which decomposed the ultrasound Doppler signals into linear expansion of atoms in a time-frequency dictionary by using the Matching Pursuit (MP) for de-noising the ultrasound Doppler signal. Subsequently, a simplified unidirectional pulse coupled neural network was applied to calculate the firing matrix of the denoised spectrogram. The Doppler speckles were located and removed through analyzing and processing the PCNN firing matrix. Experiments were conducted on simulation signals which SNRs were 0dB, 5dB and 10dB. The result showed that the MP-PCNN performed effectively in reducing noise, eliminating Doppler speckles, and achieved better performance than exiting noise and speckle suppression algorithm for Doppler ultrasound blood flow spectrogram.

摘要

为降低超声多普勒血流信号频谱图中的背景噪声和多普勒斑点,提出了一种名为带阈值衰减脉冲耦合神经网络的匹配追踪(MP-PCNN)的新方法。该方法采用迭代算法,通过匹配追踪(MP)将超声多普勒信号分解为时频字典中原子的线性展开,以对超声多普勒信号进行去噪。随后,应用简化的单向脉冲耦合神经网络计算去噪频谱图的点火矩阵。通过对PCNN点火矩阵进行分析和处理来定位和去除多普勒斑点。对信噪比分别为0dB、5dB和10dB的模拟信号进行了实验。结果表明,MP-PCNN在降低噪声、消除多普勒斑点方面表现有效,并且在多普勒超声血流频谱图的噪声和斑点抑制方面比现有算法具有更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验