Suppr超能文献

[基于多重分形分析的病理性心电信号小波模极大值]

[Wavelet modulus maxima of multifractality based analysis of the pathological ECG signals].

作者信息

Yu Zhengfeng, Wang Jun

机构信息

Image Processing and Image Communications Key Lab., College of Telecommunications & Informnation Engineering, Nanjing Univ. of Posts & Telecomm., Nanjing 210003, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2011 Oct;28(5):907-10.

Abstract

In this paper, wavelet moudulus maxima based multifractal analysis was used to study the multifractal characteristics of the atrial premature beat (APB) signal, the premature ventricular contraction (PVC) signal and normal ECG signal. By analyzing the multifractal spectrum, it was obtained that three kinds of signals had different multifractal strengths. Normal ECG signals had the strongest singularity strength. The PVC beats had the second stronger singularity strength. And the APB beats had the weakest singularity strength. The T test indicated that above-mentioned analysis could disclose significant differences among these three signals. It has meaningful reference for clinical diagnosing and distinguishing with PVC and APB signals.

摘要

本文采用基于小波模极大值的多重分形分析方法,研究房性早搏(APB)信号、室性早搏(PVC)信号和正常心电图信号的多重分形特征。通过分析多重分形谱发现,这三种信号具有不同的多重分形强度。正常心电图信号的奇异性强度最强。PVC搏动的奇异性强度次之。而APB搏动的奇异性强度最弱。T检验表明,上述分析能够揭示这三种信号之间的显著差异。这对临床诊断以及区分PVC和APB信号具有重要的参考意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验