Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.
J Am Chem Soc. 2012 Jan 11;134(1):229-46. doi: 10.1021/ja205226d. Epub 2011 Dec 8.
Several members of the Alkaline Phosphatase (AP) superfamily exhibit a high level of catalytic proffciency and promiscuity in structurally similar active sites. A thorough characterization of the nature of transition state for different substrates in these enzymes is crucial for understanding the molecular mechanisms that govern those remarkable catalytic properties. In this work, we study the hydrolysis of a phosphate diester, MpNPP(-), in solution, two experimentally well-characterized variants of AP (R166S AP, R166S/E322Y AP) and wild type Nucleotide pyrophosphatase/phosphodiesterase (NPP) by QM/MM calculations in which the QM method is an approximate density functional theory previously parametrized for phosphate hydrolysis (SCC-DFTBPR). The general agreements found between these calculations and available experimental data for both solution and enzymes support the use of SCC-DFTBPR/MM for a semiquantitative analysis of the catalytic mechanism and nature of transition state in AP and NPP. Although phosphate diesters are cognate substrates for NPP but promiscuous substrates for AP, the calculations suggest that their hydrolysis reactions catalyzed by AP and NPP feature similar synchronous transition states that are slightly tighter in nature compared to that in solution, due in part to the geometry of the bimetallic zinc motif. Therefore, this study provides the first direct computational support to the hypothesis that enzymes in the AP superfamily catalyze cognate and promiscuous substrates via similar transition states to those in solution. Our calculations do not support the finding of recent QM/MM studies by López-Canut and co-workers, who suggested that the same diester substrate goes through a much looser transition state in NPP/AP than in solution, a result likely biased by the large structural distortion of the bimetallic zinc site in their simulations. Finally, our calculations for different phosphate diester orientations and phosphorothioate diesters highlight that the interpretation of thio-substitution experiments is not always straightforward.
碱性磷酸酶 (AP) 超家族的几个成员在结构相似的活性部位表现出高度的催化效率和混杂性。彻底表征这些酶中不同底物的过渡态的性质对于理解控制这些显著催化性质的分子机制至关重要。在这项工作中,我们通过 QM/MM 计算研究了在溶液中 MpNPP(-) 的磷酸二酯水解,其中使用了两种实验上很好表征的 AP 变体 (R166S AP、R166S/E322Y AP) 和野生型核苷酸焦磷酸酶/磷酸二酯酶 (NPP)。在 QM 方法中,QM 方法是一种以前针对磷酸水解进行参数化的近似密度泛函理论 (SCC-DFTBPR)。这些计算与溶液中和酶中的可用实验数据之间的普遍一致性支持使用 SCC-DFTBPR/MM 对 AP 和 NPP 的催化机制和过渡态性质进行半定量分析。尽管磷酸二酯是 NPP 的同源底物,但却是 AP 的混杂底物,但计算表明,它们的水解反应由 AP 和 NPP 催化,具有相似的同步过渡态,与溶液中的过渡态相比,其性质略微更紧,部分原因是双金属锌基序的几何形状。因此,这项研究首次为 AP 超家族中的酶通过与溶液中相似的过渡态催化同源和混杂底物的假设提供了直接的计算支持。我们的计算不支持 López-Canut 及其同事最近的 QM/MM 研究结果,他们认为相同的二酯底物在 NPP/AP 中的过渡态比在溶液中松散得多,这一结果可能是由于他们模拟中的双金属锌位点的结构变形较大而产生的偏差。最后,我们对不同磷酸二酯取向和硫代磷酸二酯的计算突出表明,硫代取代实验的解释并不总是直截了当的。