Suppr超能文献

色氨酸 697 调节人亚甲基四氢叶酸还原酶中的氢化物和黄素间电子转移。

Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase.

机构信息

Department of Chemistry, University of British Columbia, Kelowna, BC, Canada V1V 1V7.

出版信息

Biochemistry. 2011 Dec 27;50(51):11131-42. doi: 10.1021/bi2012228. Epub 2011 Nov 30.

Abstract

Human methionine synthase reductase (MSR), a diflavin oxidoreductase, plays a vital role in methionine and folate metabolism by sustaining methionine synthase (MS) activity. MSR catalyzes the oxidation of NADPH and shuttles electrons via its FAD and FMN cofactors to inactive MS-cob(II)alamin. A conserved aromatic residue (Trp697) positioned next to the FAD isoalloxazine ring controls nicotinamide binding and catalysis in related flavoproteins. We created four MSR mutants (W697S, W697H, S698Δ, and S698A) and studied their associated kinetic behavior. Multiwavelength stopped-flow analysis reveals that NADPH reduction of the C-terminal Ser698 mutants occurs in three resolvable kinetic steps encompassing transfer of a hydride ion to FAD, semiquinone formation (indicating FAD to FMN electron transfer), and slow flavin reduction by a second molecule of NADPH. Corresponding experiments with the W697 mutants show a two-step flavin reduction without an observable semiquinone intermediate, indicating that W697 supports FAD to FMN electron transfer. Accelerated rates of FAD reduction, steady-state cytochrome c(3+) turnover, and uncoupled NADPH oxidation in the S698Δ and W697H mutants may be attributed to a decrease in the energy barrier for displacement of W697 by NADPH. Binding of NADP(+), but not 2',5'-ADP, is tighter for all mutants than for native MSR. The combined studies demonstrate that while W697 attenuates hydride transfer, it ensures coenzyme selectivity and accelerates FAD to FMN electron transfer. Moreover, analysis of analogous cytochrome P450 reductase (CPR) variants points to key differences in the driving force for flavin reduction and suggests that the conserved FAD stacking tryptophan residue in CPR also promotes interflavin electron transfer.

摘要

人类蛋氨酸合成酶还原酶(MSR)是一种双黄素氧化还原酶,通过维持蛋氨酸合成酶(MS)的活性,在蛋氨酸和叶酸代谢中发挥着至关重要的作用。MSR 催化 NADPH 的氧化,并通过其 FAD 和 FMN 辅因子将电子转移到失活的 MS-cob(II)alamin。一个位于 FAD 异咯嗪环旁边的保守芳香族残基(色氨酸 697)控制着相关黄素蛋白中烟酰胺的结合和催化。我们构建了四个 MSR 突变体(W697S、W697H、S698Δ 和 S698A),并研究了它们的相关动力学行为。多波长停流分析表明,C 末端 Ser698 突变体的 NADPH 还原分三个可分辨的动力学步骤进行,包括向 FAD 转移一个氢原子、半醌形成(表明 FAD 到 FMN 的电子转移)以及第二个 NADPH 分子缓慢还原黄素。与 W697 突变体的相应实验表明,黄素还原的两步过程中没有可观察到的半醌中间体,表明 W697 支持 FAD 到 FMN 的电子转移。S698Δ 和 W697H 突变体中 FAD 还原的加速速率、稳态细胞色素 c(3+)周转和未偶联的 NADPH 氧化可能归因于 W697 被 NADPH 取代的能量障碍降低。与天然 MSR 相比,所有突变体与 NADP(+)的结合都比与 2',5'-ADP 的结合更紧密。综合研究表明,虽然 W697 减弱了氢原子转移,但它确保了辅酶的选择性并加速了 FAD 到 FMN 的电子转移。此外,对类似细胞色素 P450 还原酶(CPR)变体的分析表明,黄素还原的驱动力存在关键差异,并表明 CPR 中保守的 FAD 堆积色氨酸残基也促进了黄素间的电子转移。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验