Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chong Qing, China.
Cell Signal. 2012 Mar;24(3):685-98. doi: 10.1016/j.cellsig.2011.10.017. Epub 2011 Nov 9.
The photopigment melanopsin and melanopsin-containing RGCs (mRGCs or ipRGCs) represent a brand-new and exciting direction in the field of visual field. Although the melanopsin is much less sensitive to light and has far less spatial resolution, mRGCs have the unique ability to project to brain areas by the retinohypothalamic tract (RHT) and communicate directly with the brain. Unfortunately, melanopsin presents lower expression levels in many acute and chronic retinal diseases. The molecular mechanisms underlying melanopsin expression are not yet really understood. MicroRNAs play important roles in the control of development. Most importantly, the link of microRNA biology to a diverse set of cellular processes, ranging from proliferation, apoptosis and malignant transformation to neuronal development and fate specification is emerging. We employed Royal College of Surgeon (RCS) rats as animal model to investigate the underlying molecular mechanism regulating melanopsin expression using a panel of miRNA by quantitative real-time reverse transcription polymerase chain reaction. We identified a microRNA, mir133b, that is specifically expressed in retinal dopaminergic amacrine cells as well as markedly increased expression at early stage during retinal degeneration in RCS rats. The overexpression of mir133b downregulates the important transcription factor Pitx3 expression in dopaminergic amacrine cells in RCS rats retinas and makes amacrine cells stratification deficit in IPL. Furthermore, deficient dopaminergic amacrine cells presented decreased TH expression and dopamine production, which lead to a failure to direct mRGCs dendrite to stratify and enter INL and lead to the reduced correct connections between amacrine cells and mRGCs. Our study suggested that overexpression of mir133b and downregulated Pitx3 suppress maturation and function of dopaminergic amacrine cells, and overexpression of mir133b decreased TH and D2 receptor expression as well as dopamine production, which finally resulted in reduced melanopsin expression.
视蛋白黑素原和含有视蛋白黑素原的视网膜神经节细胞(mRGC 或 ipRGC)代表了视野领域的一个全新而令人兴奋的方向。尽管视蛋白对光的敏感度较低,空间分辨率也较低,但 mRGC 具有通过视网膜下丘脑束(RHT)向大脑区域投射的独特能力,并与大脑直接通信。不幸的是,视蛋白在许多急性和慢性视网膜疾病中的表达水平较低。视蛋白表达的分子机制尚未真正了解。microRNAs 在发育的控制中发挥重要作用。最重要的是,microRNA 生物学与一系列细胞过程的联系正在出现,这些过程从增殖、凋亡和恶性转化到神经元发育和命运特化不等。我们使用皇家外科医生学院 (RCS) 大鼠作为动物模型,通过定量实时逆转录聚合酶链反应用一组 microRNA 研究调节视蛋白表达的潜在分子机制。我们确定了一种 microRNA,mir133b,它在视网膜多巴胺能无长突细胞中特异性表达,并在 RCS 大鼠视网膜变性的早期阶段表达明显增加。mir133b 的过表达下调了 RCS 大鼠视网膜多巴胺能无长突细胞中重要的转录因子 Pitx3 的表达,使 IPL 中的无长突细胞分层不足。此外,多巴胺能无长突细胞缺失导致 TH 表达和多巴胺产生减少,这导致 mRGC 树突无法正确分层进入 INL,并导致无长突细胞和 mRGC 之间的连接减少。我们的研究表明,mir133b 的过表达和 Pitx3 的下调抑制了多巴胺能无长突细胞的成熟和功能,mir133b 的过表达降低了 TH 和 D2 受体的表达以及多巴胺的产生,最终导致视蛋白黑素原表达减少。