Suppr超能文献

判别分析和机器学习方法在识别和分类具有透皮增强潜力的化合物中的应用。

The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers.

机构信息

School of Pharmacy, Keele University, Keele, Staffordshire, UK.

出版信息

Eur J Pharm Sci. 2012 Jan 23;45(1-2):116-27. doi: 10.1016/j.ejps.2011.10.027. Epub 2011 Nov 11.

Abstract

Discriminant analysis (DA) has previously been shown to allow the proposal of simple guidelines for the classification of 73 chemical enhancers of percutaneous absorption. Pugh et al. employed DA to classify such enhancers into simple categories, based on the physicochemical properties of the enhancer molecules (Pugh et al., 2005). While this approach provided a reasonable accuracy of classification it was unable to provide a consistently reliable estimate of enhancement ratio (ER, defined as the amount of hydrocortisone transferred after 24h, relative to control). Machine Learning methods, including Gaussian process (GP) regression, have recently been employed in the prediction of percutaneous absorption of exogenous chemicals (Moss et al., 2009; Lam et al., 2010; Sun et al., 2011). They have shown that they provide more accurate predictions of these phenomena. In this study several Machine Learning methods, including the K-nearest-neighbour (KNN) regression, single layer networks, radial basis function networks and the SVM classifier were applied to an enhancer dataset reported previously. The SMOTE sampling method was used to oversample chemical compounds with ER>10 in each training set in order to improve estimation of GP and KNN. Results show that models using five physicochemical descriptors exhibit better performance than those with three features. The best classification result was obtained by using the SVM method without dealing with imbalanced data. Following over-sampling, GP gives the best result. It correctly assigned 8 of the 12 "good" (ER>10) enhancers and 56 of the 59 "poor" enhancers (ER<10). Overall success rates were similar. However, the pharmaceutical advantages of the Machine Learning methods are that they can provide more accurate classification of enhancer type with fewer false-positive results and that, unlike discriminant analysis, they are able to make predictions of enhancer ability.

摘要

判别分析(DA)先前已被证明可用于为 73 种经皮吸收化学增强剂的分类提出简单的准则。Pugh 等人根据增强剂分子的物理化学特性,采用 DA 将此类增强剂分为简单类别(Pugh 等人,2005)。虽然这种方法提供了合理的分类准确性,但它无法提供一致可靠的增强比(ER)估计值(定义为 24 小时后转移的氢化可的松量相对于对照)。机器学习方法,包括高斯过程(GP)回归,最近已被用于预测外源性化学物质的经皮吸收(Moss 等人,2009;Lam 等人,2010;Sun 等人,2011)。它们表明,它们可以更准确地预测这些现象。在这项研究中,几种机器学习方法,包括 K-最近邻(KNN)回归、单层网络、径向基函数网络和 SVM 分类器,被应用于先前报道的增强剂数据集。SMOTE 采样方法用于在每个训练集中对 ER>10 的化合物进行过采样,以提高 GP 和 KNN 的估计值。结果表明,使用五个物理化学描述符的模型比使用三个特征的模型表现更好。最佳分类结果是使用 SVM 方法获得的,而无需处理不平衡数据。过采样后,GP 给出了最佳结果。它正确分配了 12 种“良好”(ER>10)增强剂中的 8 种和 59 种“不良”增强剂(ER<10)中的 56 种。总体成功率相似。然而,机器学习方法的制药优势在于,它们可以提供更准确的增强剂类型分类,具有更少的假阳性结果,并且与判别分析不同,它们能够预测增强剂的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验