Bardwell David A, Adjiman Claire S, Arnautova Yelena A, Bartashevich Ekaterina, Boerrigter Stephan X M, Braun Doris E, Cruz-Cabeza Aurora J, Day Graeme M, Della Valle Raffaele G, Desiraju Gautam R, van Eijck Bouke P, Facelli Julio C, Ferraro Marta B, Grillo Damian, Habgood Matthew, Hofmann Detlef W M, Hofmann Fridolin, Jose K V Jovan, Karamertzanis Panagiotis G, Kazantsev Andrei V, Kendrick John, Kuleshova Liudmila N, Leusen Frank J J, Maleev Andrey V, Misquitta Alston J, Mohamed Sharmarke, Needs Richard J, Neumann Marcus A, Nikylov Denis, Orendt Anita M, Pal Rumpa, Pantelides Constantinos C, Pickard Chris J, Price Louise S, Price Sarah L, Scheraga Harold A, van de Streek Jacco, Thakur Tejender S, Tiwari Siddharth, Venuti Elisabetta, Zhitkov Ilia K
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England.
Acta Crystallogr B. 2011 Dec;67(Pt 6):535-51. doi: 10.1107/S0108768111042868. Epub 2011 Nov 17.
Following on from the success of the previous crystal structure prediction blind tests (CSP1999, CSP2001, CSP2004 and CSP2007), a fifth such collaborative project (CSP2010) was organized at the Cambridge Crystallographic Data Centre. A range of methodologies was used by the participating groups in order to evaluate the ability of the current computational methods to predict the crystal structures of the six organic molecules chosen as targets for this blind test. The first four targets, two rigid molecules, one semi-flexible molecule and a 1:1 salt, matched the criteria for the targets from CSP2007, while the last two targets belonged to two new challenging categories - a larger, much more flexible molecule and a hydrate with more than one polymorph. Each group submitted three predictions for each target it attempted. There was at least one successful prediction for each target, and two groups were able to successfully predict the structure of the large flexible molecule as their first place submission. The results show that while not as many groups successfully predicted the structures of the three smallest molecules as in CSP2007, there is now evidence that methodologies such as dispersion-corrected density functional theory (DFT-D) are able to reliably do so. The results also highlight the many challenges posed by more complex systems and show that there are still issues to be overcome.
继之前的晶体结构预测盲测(CSP1999、CSP2001、CSP2004和CSP2007)取得成功之后,剑桥晶体学数据中心组织了第五个此类合作项目(CSP2010)。参与小组使用了一系列方法,以评估当前计算方法预测被选作此次盲测目标的六种有机分子晶体结构的能力。前四个目标,两个刚性分子、一个半柔性分子和一种1:1盐,符合CSP2007中目标的标准,而最后两个目标属于两个新的具有挑战性的类别——一个更大、更具柔性的分子和一种具有多种多晶型的水合物。每个小组对其尝试的每个目标提交了三个预测结果。每个目标至少有一个成功的预测,并且有两个小组能够成功预测出大柔性分子的结构并将其作为第一名提交。结果表明,虽然成功预测三个最小分子结构的小组数量不如CSP2007中的多,但现在有证据表明,诸如色散校正密度泛函理论(DFT-D)等方法能够可靠地做到这一点。结果还突出了更复杂系统带来的诸多挑战,并表明仍有问题有待克服。