Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea.
Dev Neurobiol. 2012 Jun;72(6):865-77. doi: 10.1002/dneu.22001.
Presenilins (PS1 and PS2) are multifunctional proteins involved in a diverse array of molecular and cellular functions, including proteolysis, development, neurogenesis, synaptic plasticity, ion channel regulation and phospholipid metabolism. Mutations in presenilin genes are responsible for the majority of Familial Alzheimer disease (FAD). Consequently, FAD-associated mutations in genes encoding PS1 or PS2 lead to several key cellular phenotypes, including alterations in proteolysis of β-amyloid precursor protein (APP) and Ca(2+) entry. The mechanism underlying presenilin (PS)-mediated modulation of Ca(2+) entry remains to be determined. Our previous studies showed that the PS-dependent down-regulation of phosphatidylinositol-4,5-bisphosphate (PIP2) is attributable to the observed Ca(2+) deficits. In this study, we attempted to identify the ion channel that is subject to the PIP2 and PS-dependent modulation. We found that Ca(2+) or Zn(2+) entry via the transient receptor potential melastatin 7 (TRPM7) channel was attenuated by the presence of FAD-associated PS1 mutants, such as ΔE9 and L286V. TRPM7 has been implicated in Mg(2+) homeostasis and embryonic development. The intracellular delivery of PIP2 restored TRPM7-mediated Ca(2+) influx, indicating that the observed deficits in Ca(2+) entry are due to downregulation of PIP2. Conversely, PS1 and PS2 deficiency, previously shown to upregulate PIP2 levels, potentiated TRPM7-mediated Ca(2+) influx. PS-dependent changes in Ca(2+) influx could be neutralized by a TRPM7 channel blocker. Collectively, these results indicate that TRPM7 may underlie the Ca(2+) entry deficits observed in FAD-associated PS mutants and suggest that the normal function of PS involves regulation of TRPM7 through a PIP2-dependent mechanism.
早老素蛋白(PS1 和 PS2)是多功能蛋白,参与多种分子和细胞功能,包括蛋白水解、发育、神经发生、突触可塑性、离子通道调节和磷脂代谢。早老素基因的突变是家族性阿尔茨海默病(FAD)的主要原因。因此,编码 PS1 或 PS2 的基因中的 FAD 相关突变导致几种关键的细胞表型,包括β-淀粉样前体蛋白(APP)的蛋白水解和 Ca2+内流的改变。早老素(PS)介导的 Ca2+内流调节的机制仍有待确定。我们之前的研究表明,PS 依赖性下调磷脂酰肌醇-4,5-二磷酸(PIP2)归因于观察到的 Ca2+不足。在这项研究中,我们试图确定受 PIP2 和 PS 依赖性调节的离子通道。我们发现,通过瞬时受体电位 melastatin 7(TRPM7)通道的 Ca2+或 Zn2+内流被 FAD 相关 PS1 突变体(如 ΔE9 和 L286V)削弱。TRPM7 与 Mg2+稳态和胚胎发育有关。PIP2 的细胞内传递恢复了 TRPM7 介导的 Ca2+内流,表明观察到的 Ca2+内流不足是由于 PIP2 的下调。相反,先前显示上调 PIP2 水平的 PS1 和 PS2 缺乏症增强了 TRPM7 介导的 Ca2+内流。PS 依赖性 Ca2+内流变化可被 TRPM7 通道阻滞剂中和。总之,这些结果表明,TRPM7 可能是 FAD 相关 PS 突变体中观察到的 Ca2+内流不足的基础,并表明 PS 的正常功能涉及通过 PIP2 依赖性机制调节 TRPM7。