Suppr超能文献

金黄色葡萄球菌感染过程中多重耐药性的演变涉及必需的双组分调控因子 WalKR 的突变。

Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR.

机构信息

Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia.

出版信息

PLoS Pathog. 2011 Nov;7(11):e1002359. doi: 10.1371/journal.ppat.1002359. Epub 2011 Nov 10.

Abstract

Antimicrobial resistance in Staphylococcus aureus is a major public health threat, compounded by emergence of strains with resistance to vancomycin and daptomycin, both last line antimicrobials. Here we have performed high throughput DNA sequencing and comparative genomics for five clinical pairs of vancomycin-susceptible (VSSA) and vancomycin-intermediate ST239 S. aureus (VISA); each pair isolated before and after vancomycin treatment failure. These comparisons revealed a frequent pattern of mutation among the VISA strains within the essential walKR two-component regulatory locus involved in control of cell wall metabolism. We then conducted bi-directional allelic exchange experiments in our clinical VSSA and VISA strains and showed that single nucleotide substitutions within either walK or walR lead to co-resistance to vancomycin and daptomycin, and caused the typical cell wall thickening observed in resistant clinical isolates. Ion Torrent genome sequencing confirmed no additional regulatory mutations had been introduced into either the walR or walK VISA mutants during the allelic exchange process. However, two potential compensatory mutations were detected within putative transport genes for the walK mutant. The minimal genetic changes in either walK or walR also attenuated virulence, reduced biofilm formation, and led to consistent transcriptional changes that suggest an important role for this regulator in control of central metabolism. This study highlights the dramatic impacts of single mutations that arise during persistent S. aureus infections and demonstrates the role played by walKR to increase drug resistance, control metabolism and alter the virulence potential of this pathogen.

摘要

金黄色葡萄球菌的抗生素耐药性是一个主要的公共卫生威胁,而耐万古霉素和达托霉素的菌株的出现更是加剧了这一问题,这两种药物都是最后的抗生素。在这里,我们对 5 对临床分离的万古霉素敏感(VSSA)和万古霉素中介 ST239 金黄色葡萄球菌(VISA)进行了高通量 DNA 测序和比较基因组学研究;每对菌株都是在万古霉素治疗失败之前和之后分离的。这些比较揭示了 VISA 菌株中经常出现的突变模式,涉及控制细胞壁代谢的必需 walKR 双组分调节基因座内。然后,我们在临床 VSSA 和 VISA 菌株中进行了双向等位基因交换实验,结果表明 walK 或 walR 中的单核苷酸替换导致对万古霉素和达托霉素的共同耐药性,并导致在耐药临床分离株中观察到的典型细胞壁增厚。Ion Torrent 基因组测序证实,在等位基因交换过程中,walR 或 walK VISA 突变体中没有引入其他调节突变。然而,在 walK 突变体的潜在运输基因中检测到两个潜在的补偿突变。walK 或 walR 中的最小遗传变化也减弱了毒力,减少了生物膜的形成,并导致了一致的转录变化,表明该调节剂在控制中心代谢中起着重要作用。这项研究强调了金黄色葡萄球菌持续感染过程中单个突变的巨大影响,并证明了 walKR 在增加耐药性、控制代谢和改变病原体毒力潜力方面的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00d7/3213104/741a32ce5b3c/ppat.1002359.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验