Department of Bacteriology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan.
Antimicrob Agents Chemother. 2010 Dec;54(12):5222-33. doi: 10.1128/AAC.00437-10. Epub 2010 Sep 13.
We have previously reported the establishment of a Staphylococcus aureus laboratory strain, 10 3d1, having reduced susceptibility to daptomycin and heterogeneous vancomycin-intermediate S. aureus (VISA) phenotype. The strain was generated in vitro by serial daptomycin selection (Camargo, I. L., H. M. Neoh, L. Cui, and K. Hiramatsu, Antimicrob. Agents Chemother. 52:4289-4299, 2008). Here we explored the genetic mechanism of resistance in the strain by whole-genome sequencing and by producing gene-replaced strains. By genome comparison between 10 3d1 and its parent methicillin-resistant Staphylococcus aureus (MRSA) strain N315ΔIP, we identified five nonsynonymous single nucleotide polymorphisms (SNPs). One of the five mutations was found in the rpoB gene encoding the RNA polymerase β subunit. The mutation at nucleotide position 1862 substituted the 621st alanine by glutamic acid. The replacement of the intact rpoB with the mutated rpoB, designated rpoB(A621E), conferred N315ΔIP with the phenotypes of reduced susceptibility to daptomycin and hetero-VISA. The rpoB(A621E)-mediated resistance conversion was accompanied by a thickened cell wall and reduction of the cell surface negative charge. Being consistent with these phenotypic changes, microarray data showed that the expression of the dlt operon, which increases the cell surface positive charge, was enhanced in the rpoB(A621E) mutant. Other remarkable findings of microarray analysis of the rpoB(A621E) mutant included repression of metabolic pathways of purine, pyrimidine, arginine, the urea cycle, and the lac operon, enhancement of the biosynthetic pathway of vitamin B2, K1, and K2, and cell wall metabolism. Finally, mutations identified in rplV and rplC, encoding 50S ribosomal proteins L22 and L3, respectively, were found to be associated with the slow growth, but not with the phenotype of decreased susceptibility to vancomycin and daptomycin, of 10 3d1.
我们之前曾报道过一株耐达霉素和异质性万古霉素中间金黄色葡萄球菌(VISA)表型敏感性降低的金黄色葡萄球菌实验室菌株 103d1 的建立。该菌株是通过连续耐达霉素选择(Camargo,IL,H.M.Neoh,L.Cui 和 K.Hiramatsu,Antimicrob.Agents Chemother.52:4289-4299,2008)在体外产生的。在这里,我们通过全基因组测序和基因替换株的产生来探索该菌株的耐药遗传机制。通过比较 103d1 与其亲代耐甲氧西林金黄色葡萄球菌(MRSA)菌株 N315ΔIP 的基因组,我们鉴定了五个非同义单核苷酸多态性(SNP)。这五个突变中的一个位于编码 RNA 聚合酶β亚基的 rpoB 基因中。第 1862 位核苷酸的突变将第 621 位丙氨酸突变为谷氨酸。用完整的 rpoB 替换突变的 rpoB,命名为 rpoB(A621E),赋予 N315ΔIP 对达托霉素和异质性 VISA 的敏感性降低的表型。rpoB(A621E)介导的耐药转换伴随着细胞壁增厚和细胞表面负电荷减少。与这些表型变化一致,微阵列数据显示,增加细胞表面正电荷的 dlt 操纵子的表达在 rpoB(A621E)突变体中增强。rpoB(A621E)突变体微阵列分析的其他显著发现包括嘌呤、嘧啶、精氨酸、尿素循环和 lac 操纵子的代谢途径受到抑制,维生素 B2、K1 和 K2 的生物合成途径增强,以及细胞壁代谢。最后,在编码 50S 核糖体蛋白 L22 和 L3 的 rplV 和 rplC 中发现的突变与 103d1 的生长缓慢有关,但与对万古霉素和达托霉素敏感性降低的表型无关。