Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.
J Phys Chem A. 2012 Mar 22;116(11):2736-42. doi: 10.1021/jp207844w. Epub 2011 Nov 21.
This article presents the results of the first quantum simulations of the electronic flux density (j(e)) by the "coupled-channels" (CC) theory, the fundamentals of which are presented in the previous article [Diestler, D. J. J. Phys. Chem. A 2012, DOI: 10.1021/jp207843z]. The principal advantage of the CC scheme is that it employs exclusively standard methods of quantum chemistry and quantum dynamics within the framework of the Born-Oppenheimer approximation (BOA). The CC theory goes beyond the BOA in that it yields a nonzero j(e) for electronically adiabatic processes, in contradistinction to the BOA itself, which always gives j(e) = 0. The CC is applied to oriented H(2)(+) vibrating in the electronic ground state ((2)Σ(g)(+)), for which the nuclear and electronic flux densities evolve on a common time scale of about 22 fs per vibrational period. The system is chosen as a touchstone for the CC theory, because it is the only one for which highly accurate flux densities have been calculated numerically without invoking the BOA [Barth et al, Chem. Phys. Lett. 2009, 481, 118]. Good agreement between CC and accurate results supports the CC approach, another advantage of which is that it allows a transparent interpretation of the temporal and spatial properties of j(e).
本文介绍了“耦合通道”(CC)理论首次对电子通量密度(j(e))进行量子模拟的结果,该理论的基础在之前的文章[Diestler, D. J. J. Phys. Chem. A 2012, DOI: 10.1021/jp207843z]中已有介绍。CC 方案的主要优点是,它仅在 Born-Oppenheimer 近似(BOA)框架内采用量子化学和量子动力学的标准方法。CC 理论超越了 BOA,因为它为电子绝热过程产生非零的 j(e),而 BOA 本身总是给出 j(e) = 0。CC 理论应用于在电子基态((2)Σ(g)(+))中振动的定向 H(2)(+),其中核和电子通量密度在大约每振动周期 22 fs 的共同时间尺度上演变。选择该系统作为 CC 理论的试金石,因为它是唯一一种无需采用 BOA 即可通过数值计算得到高度准确的通量密度的系统[Barth 等人,Chem. Phys. Lett. 2009, 481, 118]。CC 与准确结果之间的良好一致性支持了 CC 方法,其另一个优点是它允许对 j(e)的时间和空间特性进行透明解释。