Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.
J Phys Chem A. 2012 Mar 22;116(11):2728-35. doi: 10.1021/jp207843z. Epub 2011 Nov 21.
The Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (j(e)), <j(e, NCM) (x,t) >=1/2∫dR[Δ(b) (x;R) - Δ(a) (x;R)]<j(b,a) (R,t)> even though the electrons certainly move in response to the movement of the nuclei. This article, the first of a pair, proposes a quantum-mechanical "coupled-channels" (CC) theory that allows the approximate extraction of j(e) from the electronically adiabatic BO wave function . The CC theory is detailed for H(2)(+), in which case j(e) can be resolved into components associated with two channels α (=a,b), each of which corresponds to the "collision" of an "internal" atom α (proton a or b plus electron) with the other nucleus β (proton b or a). The dynamical role of the electron, which accommodates itself instantaneously to the motion of the nuclei, is submerged in effective electronic probability (population) densities, Δ(α), associated with each channel (α). The Δ(α) densities are determined by the (time-independent) BO electronic energy eigenfunction, which depends parametrically on the configuration of the nuclei, the motion of which is governed by the usual BO nuclear Schrödinger equation. Intuitively appealing formal expressions for the electronic flux density are derived for H(2)(+).
电子绝热分子过程的玻恩-奥本海默(BO)描述预测电子通量密度(j(e))为零,<j(e, NCM) (x,t) >=1/2∫dR[Δ(b) (x;R) - Δ(a) (x;R)]<j(b,a) (R,t)>,尽管电子肯定会响应核的运动而移动。本文是一对文章中的第一篇,提出了一种量子力学“耦合通道”(CC)理论,该理论允许从电子绝热 BO 波函数中近似提取 j(e)。CC 理论详细介绍了 H(2)(+),在这种情况下,j(e)可以分解为与两个通道α(=a,b)相关的分量,每个通道对应于“碰撞”两个“内部”原子α(质子 a 或 b 加上电子)与另一个核β(质子 b 或 a)。电子的动力学作用,它可以立即适应原子核的运动,被淹没在与每个通道(α)相关的有效电子概率(种群)密度Δ(α)中。Δ(α)密度由(时间独立)BO 电子本征函数决定,该函数取决于原子核的构型,原子核的运动由通常的 BO 核薛定谔方程控制。对于 H(2)(+),推导出了电子通量密度的直观吸引人的形式表达式。