Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
PLoS One. 2011;6(11):e27398. doi: 10.1371/journal.pone.0027398. Epub 2011 Nov 14.
In bacteria polyphosphates (poly-P) are involved in cellular metabolism and development especially during stress. The enzyme, principally involved in polyphosphate biosynthesis and its mobilization leading to generation of NTPs, is known as polyphosphate kinase (PPK).
Among two genes of polyphosphate kinases present in Mycobacterium tuberculosis, we cloned and expressed PPK1 in Escherichia coli as histidine-tagged protein. This ∼86 kDa protein is capable of autophosphorylation and synthesis of poly-P as well as NTP. Among 22 conserved histidine residues, we found only His-491 is autophosphorylated and crucial for any enzymatic activity. Substitution of His-510 caused mPPK1 protein deficient but not defective in autophosphorylation, thereby contrary to earlier reports negating any role of this residue in the process. However, mutation of His-510 with either Ala or Gln affected ATP or poly-P synthesis depending on the substitution; while such effects were severe with H510A but mild with H510Q. Furthermore, mPPK1 also renders auxiliary nucleotide diphosphate kinase function by synthesizing virtually all NTPs/dNTPs from their cognate NDPs/dNDPs by utilizing poly-P as the phosphate donor albeit with varied efficiency. To assess the influence of other catalytic domain residues of mPPK1 towards its functionality, we designed mutations based on E. coli PPK1 crystal structure since it owes 68% amino acid sequence similarity with mPPK1. Interestingly, our results revealed that mutations in mPPK1 affecting poly-P synthesis always affected its ATP synthesizing ability; however, the reverse may not be true.
CONCLUSIONS/SIGNIFICANCE: We conclude that amino acid residues involved in poly-P and ATP synthesizing activities of mPPK1 are distinct. Considering conserved nature of PPK1, it seems our observations have broader implications and not solely restricted to M. tuberculosis only.
在细菌中,多聚磷酸盐(poly-P)参与细胞代谢和发育,特别是在应激期间。主要参与多聚磷酸盐生物合成及其动员以产生 NTP 的酶,称为多聚磷酸盐激酶(PPK)。
在结核分枝杆菌存在的两个多聚磷酸盐激酶基因中,我们在大肠杆菌中克隆并表达了 PPK1,作为组氨酸标记蛋白。这个约 86 kDa 的蛋白能够自我磷酸化并合成多聚磷酸盐以及 NTP。在 22 个保守的组氨酸残基中,我们发现只有 His-491 被自我磷酸化,并且对任何酶活性都是关键的。取代 His-510 导致 mPPK1 蛋白缺乏,但不影响自我磷酸化,从而与之前的报道相反,否定了该残基在该过程中的任何作用。然而,His-510 突变为 Ala 或 Gln 会根据取代情况影响 ATP 或多聚磷酸盐的合成;而 H510A 的影响更严重,但 H510Q 的影响较温和。此外,mPPK1 还通过利用多聚磷酸盐作为磷酸供体,从其相应的 NDPs/dNDPs 合成几乎所有的 NTP/dNTP,从而赋予辅助核苷酸二磷酸激酶功能,尽管效率不同。为了评估 mPPK1 的其他催化结构域残基对其功能的影响,我们根据大肠杆菌 PPK1 晶体结构设计了突变,因为它与 mPPK1 具有 68%的氨基酸序列相似性。有趣的是,我们的结果表明,影响多聚磷酸盐合成的 mPPK1 突变总是影响其 ATP 合成能力;然而,反之则不一定。
结论/意义:我们得出结论,参与 mPPK1 多聚磷酸盐和 ATP 合成活性的氨基酸残基是不同的。考虑到 PPK1 的保守性质,似乎我们的观察结果具有更广泛的意义,不仅限于结核分枝杆菌。