Suppr超能文献

在跳动心脏上进行稳健的特征跟踪,以实现机器人引导的内窥镜。

Robust feature tracking on the beating heart for a robotic-guided endoscope.

机构信息

Philips Research North America, Briarcliff Manor, NY, USA.

出版信息

Int J Med Robot. 2011 Dec;7(4):459-68. doi: 10.1002/rcs.418. Epub 2011 Oct 7.

Abstract

BACKGROUND

Visualization during minimally invasive bypass surgery on the beating heart can be enhanced by using a robotic-guided endoscope and visual servoing from the endoscopic images. In order to achieve these objectives, this work has focused on developing and testing algorithms for accurate, robust and real-time motion tracking of features on the beating heart, using marker-less approaches and an uncalibrated endoscope.

METHODS

Lucas-Kanade pyramidal optical flow-based algorithms and speeded-up robust features (SURF)-based methods have been extensively evaluated, using a range of developed metrics, in order to quantify accuracy, robustness and drift under a variety of circumstances. Three sets of experiments are reported: the first set compared the two tracking methods, using a beating-heart phantom and a static endoscope; the second set evaluated the methods when images were taken using a moving robotic-guided endoscope; and finally, the Lucas-Kanade optical flow algorithm was extensively tested in a visual servoing application, using a robotic endoscope.

RESULTS

The combination of a Lucas-Kanade tracking algorithm and a SURF-based feature detection method gave the best performance in terms of accuracy and robustness of tracking, while preserving real-time computation requirements. The optimal parameters consist of a window size of 51 × 51 pixels and an interframe motion threshold of 20 pixels. Feature tracking was successfully integrated into uncalibrated visual servoing or a robotic-guided endoscope.

CONCLUSIONS

Robust feature tracking on a beating heart with endoscopic video can be achieved in real-time and may facilitate robotically-assisted, minimally invasive bypass surgery and conventional laparoscopic surgery.

摘要

背景

在跳动心脏的微创旁路手术中,可以通过使用机器人引导的内窥镜和内窥镜图像的视觉伺服来增强可视化效果。为了实现这些目标,这项工作专注于开发和测试用于在跳动心脏上进行准确、鲁棒和实时特征运动跟踪的算法,使用无标记方法和未校准的内窥镜。

方法

广泛评估了基于 Lucas-Kanade 金字塔光流的算法和基于加速稳健特征(SURF)的方法,使用了一系列开发的指标,以量化在各种情况下的准确性、鲁棒性和漂移。报告了三组实验:第一组使用跳动心脏模拟体和静态内窥镜比较了两种跟踪方法;第二组评估了使用移动机器人引导内窥镜拍摄图像时的方法;最后,在机器人内窥镜的视觉伺服应用中,对 Lucas-Kanade 光流算法进行了广泛测试。

结果

基于 Lucas-Kanade 跟踪算法和基于 SURF 的特征检测方法的组合在跟踪的准确性和鲁棒性方面表现最佳,同时保持实时计算要求。最佳参数包括 51x51 像素的窗口大小和 20 像素的帧间运动阈值。特征跟踪成功集成到未校准的视觉伺服或机器人引导的内窥镜中。

结论

可以实时实现内窥镜视频中跳动心脏的稳健特征跟踪,这可能有助于机器人辅助微创旁路手术和传统腹腔镜手术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验