Suppr超能文献

考虑好氧和厌氧生物降解的烃类污染源的蒸气侵入建模。

Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation.

机构信息

Department of Civil Engineering, University of Rome Tor Vergata, Via del Politecnico, 1, 00133 Rome, Italy.

出版信息

J Contam Hydrol. 2011 Nov 1;126(3-4):167-80. doi: 10.1016/j.jconhyd.2011.08.010. Epub 2011 Sep 16.

Abstract

A one-dimensional steady state vapor intrusion model including both anaerobic and oxygen-limited aerobic biodegradation was developed. The aerobic and anaerobic layer thickness are calculated by stoichiometrically coupling the reactive transport of vapors with oxygen transport and consumption. The model accounts for the different oxygen demand in the subsurface required to sustain the aerobic biodegradation of the compound(s) of concern and for the baseline soil oxygen respiration. In the case of anaerobic reaction under methanogenic conditions, the model accounts for the generation of methane which leads to a further oxygen demand, due to methane oxidation, in the aerobic zone. The model was solved analytically and applied, using representative parameter ranges and values, to identify under which site conditions the attenuation of hydrocarbons migrating into indoor environments is likely to be significant. Simulations were performed assuming a soil contaminated by toluene only, by a BTEX mixture, by Fresh Gasoline and by Weathered Gasoline. The obtained results have shown that for several site conditions oxygen concentration below the building is sufficient to sustain aerobic biodegradation. For these scenarios the aerobic biodegradation is the primary mechanism of attenuation, i.e. anaerobic contribution is negligible and a model accounting just for aerobic biodegradation can be used. On the contrary, in all cases where oxygen is not sufficient to sustain aerobic biodegradation alone (e.g. highly contaminated sources), anaerobic biodegradation can significantly contribute to the overall attenuation depending on the site specific conditions.

摘要

开发了一个包含厌氧和有限氧需好氧生物降解的一维稳态蒸汽入侵模型。通过将蒸气的反应传输与氧传输和消耗进行化学计量耦合,计算出好氧层和厌氧层的厚度。该模型考虑了维持目标化合物好氧生物降解所需的地下不同的需氧量,以及基线土壤氧气呼吸。在产甲烷条件下的厌氧反应情况下,由于甲烷氧化,模型考虑了甲烷的生成,这导致好氧区的进一步需氧量。该模型通过解析法求解,并使用代表性的参数范围和值进行应用,以确定在哪些场地条件下,进入室内环境的烃类的衰减可能显著。模拟假设仅土壤受到甲苯污染,或受到 BTEX 混合物、新鲜汽油和风化汽油污染。所得结果表明,对于几种场地条件,建筑物下方的氧气浓度足以维持好氧生物降解。对于这些情况,好氧生物降解是衰减的主要机制,即厌氧贡献可以忽略不计,并且可以使用仅考虑好氧生物降解的模型。相反,在所有氧气不足以单独维持好氧生物降解的情况下(例如高度污染的源),根据特定场地条件,厌氧生物降解可以显著有助于整体衰减。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验